對于函數(shù),若存在,使成立,則稱的不動點(diǎn). 已知函數(shù),若對任意實(shí)數(shù)b,函數(shù)恒有兩個相異的不動點(diǎn),則實(shí)數(shù)的取值范圍是   (  )
A.(0,1)B.(1,+∞)C.[0,1)D.以上都不對
A

試題分析:轉(zhuǎn)化為ax2+bx+b-1=0有兩個不等實(shí)根,轉(zhuǎn)化為b2-4a(b-1)>0恒成立,再利用二次函數(shù)大于0恒成立須滿足的條件來求解即可.
根據(jù)題意可知,,
對任意實(shí)數(shù)b,函數(shù)恒有兩個相異的不動點(diǎn)
即f(x)=ax2+(b+1)x+b-1=x有兩個不等實(shí)根,
轉(zhuǎn)化為ax2+bx+b-1=0有兩個不等實(shí)根,須有判別式大于0恒成立
即b2-4a(b-1)>0⇒△=(-4a)2-4×4a<0⇒0<a<1,
∴a的取值范圍為0<a<1;
點(diǎn)評:解決該試題的關(guān)鍵是理解不動點(diǎn)的定義,進(jìn)而轉(zhuǎn)化為方程有無實(shí)數(shù)根來分析,那么體現(xiàn)了等價轉(zhuǎn)化的思想的運(yùn)用。屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定義在R上的奇函數(shù)和偶函數(shù)滿足
,若,則  
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)+1(a>0,a≠1)的圖象必經(jīng)過定點(diǎn) (  。
A.(0,1)B.(2,1)C.(2,2)D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)通常情況下,同一地區(qū)一天的溫度隨時間變化的曲線接近于函數(shù)的圖像.2013年1月下旬荊門地區(qū)連續(xù)幾天最高溫度都出現(xiàn)在14時,最高溫度為;最低溫度出現(xiàn)在凌晨2時,最低溫度為零下.
(Ⅰ)請推理荊門地區(qū)該時段的溫度函數(shù)
的表達(dá)式;
(Ⅱ)29日上午9時某高中將舉行期末考試,如果溫度低于,教室就要開空調(diào),請問屆時學(xué)校后勤應(yīng)該送電嗎?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對實(shí)數(shù),定義運(yùn)算“”: 設(shè)函數(shù),,若函數(shù)的圖像與軸恰有兩個公共點(diǎn),則實(shí)數(shù)的取值范圍是(  )                                                                           
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某工廠生產(chǎn)一種產(chǎn)品,已知該產(chǎn)品的月產(chǎn)量x噸與每噸產(chǎn)品的價格(元)之間的關(guān)系為,且生產(chǎn)噸的成本為(元).問該廠每月生產(chǎn)多少噸產(chǎn)品才能使利潤達(dá)到最大?最大利潤是多少?(利潤=收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

奇函數(shù)在區(qū)間上是減函數(shù),則在區(qū)間上是
A.增函數(shù),且最大值為B.減函數(shù),且最大值為
C.增函數(shù),且最大值為D.減函數(shù),且最大值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(11分) 已知函數(shù)在定義域上為增函數(shù),且滿足
(1)求的值           (2)解不等式

查看答案和解析>>

同步練習(xí)冊答案