已知函數(shù)f(x)=數(shù)學(xué)公式sin(數(shù)學(xué)公式-x)sin(x+數(shù)學(xué)公式)-數(shù)學(xué)公式
(1)求過函數(shù)f(x)圖象上最高點的對稱軸方程;
(2)當(dāng)x∈[-數(shù)學(xué)公式,0]時,判斷在函數(shù)f(數(shù)學(xué)公式+x)的切線中是否存在互相垂直的兩條切線,若存在,請求出這對切點的坐標(biāo),若不存在,請說明理由.

解:(1)因為f(x)=sin(-x)sin(x+)-=cosx(sinx+cosx)
=cos2x-=(sin2x+cos2x)=
可得,k∈Z,
所以x=k,k∈Z.
(2)由f(+x)==可得
f′(x)=.x∈[-,0],所以,可得,
由于-1×1=-1,所以函數(shù)f(x)的切線中存在互相垂直的兩條切線,且它們的斜率分別為-1,1,

可得切點坐標(biāo)分別為(-),(0,1).(10分)
分析:(1)通過誘導(dǎo)公式以及兩角和的正弦函數(shù)化簡函數(shù)的表達(dá)式為一個角的一個三角函數(shù)的形式,利用正弦函數(shù)的最值求出對稱軸方程.
(2)通過函數(shù)的半小時求出函數(shù)的導(dǎo)數(shù),利用斜率與導(dǎo)數(shù)的關(guān)系,求出斜率乘積為-1,說明存在滿足題意的切線,然后求出切點坐標(biāo).
點評:本題考查函數(shù)的解析式的應(yīng)用,三角函數(shù)的化簡,函數(shù)的最值,函數(shù)的導(dǎo)數(shù)與切線的斜率的關(guān)系,考查計算能力,轉(zhuǎn)化思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+bsinx,當(dāng)x=
π
3
時,取得極小值
π
3
-
3

(1)求a,b的值;
(2)對任意x1,x2∈[-
π
3
,
π
3
]
,不等式f(x1)-f(x2)≤m恒成立,試求實數(shù)m的取值范圍;
(3)設(shè)直線l:y=g(x),曲線S:y=F(x),若直線l與曲線S同時滿足下列兩個條件:①直線l與曲線S相切且至少有兩個切點;②對任意x∈R都有g(shù)(x)≥F(x),則稱直線l與曲線S的“上夾線”.觀察下圖:

根據(jù)上圖,試推測曲線S:y=mx-nsinx(n>0)的“上夾線”的方程,并作適當(dāng)?shù)恼f明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-blnx在(1,2]是增函數(shù),g(x)=x-b
x
在(0,1)為減函數(shù).
(1)求b的值;
(2)設(shè)函數(shù)φ(x)=2ax-
1
x2
是區(qū)間(0,1]上的增函數(shù),且對于(0,1]內(nèi)的任意兩個變量s、t,f(s)≥?(t)恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos( 2x+
π
3
)+sin2x.
(Ⅰ)求函數(shù)f(x)的最小正周期和值域;
(Ⅱ)在△ABC中,角A、B、C的對邊分別為a、b、c,滿足2
AC
CB
=
2
ab,c=2
2
,f(A)=
1
2
-
3
4
,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知矩陣A=
a2
1b
有一個屬于特征值1的特征向量
α
=
2
-1
,
①求矩陣A;
②已知矩陣B=
1-1
01
,點O(0,0),M(2,-1),N(0,2),求△OMN在矩陣AB的對應(yīng)變換作用下所得到的△O'M'N'的面積.
(2)已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
 t
(t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標(biāo)方程為ρ2-4ρco sθ+3=0.
①求直線l普通方程和曲線C的直角坐標(biāo)方程;
②設(shè)點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.
(3)已知函數(shù)f(x)=|x-1|+|x+1|.
①求不等式f(x)≥3的解集;
②若關(guān)于x的不等式f(x)≥a2-a在R上恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a
2x
+xlnx
,g(x)=x3-x2-x-1.
(1)如果存在x,x∈[0,2],使得g(x)-g(x)≥M,求滿足該不等式的最大整數(shù)M;
(2)如果對任意的s,t∈[
1
3
,2],都有f(s)≥g(t)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案