已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0),過點(diǎn)A
-a,0
,B
0,b
的直線傾斜角為
π
6
,原點(diǎn)到該直線的距離為
3
2
,求橢圓的方程.
過點(diǎn)A
-a,0
,B
0,b
的直線方程為
x
-a
+
y
b
=1
,化為bx-ay+ab=0.
∵過點(diǎn)A
-a,0
,B
0,b
的直線傾斜角為
π
6
,∴
b
a
=tan
π
6
=
3
3

又原點(diǎn)到該直線的距離為
3
2
,∴
ab
a2+b2
=
3
2

聯(lián)立
b
a
=
3
3
ab
a2+b2
=
3
2
,解得
a=
3
b=1

∴橢圓C的方程為
x2
3
+y2=1
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)是橢圓的一個(gè)焦點(diǎn),是短軸,,求這個(gè)橢圓的離心率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C(ab>0)的左準(zhǔn)線恰為拋物線Ey2 = 16x的準(zhǔn)線,直線lx + 2y – 4 = 0與橢圓相切.(1)求橢圓C的方程;(2)如果橢圓C的左頂點(diǎn)為A,右焦點(diǎn)為F,過F的直線與橢圓C交于P、Q兩點(diǎn),直線AP、AQ與橢圓C的右準(zhǔn)線分別交于N、M兩點(diǎn),求證:四邊形MNPQ的對角線的交點(diǎn)是定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC的周長等于18,B、C兩點(diǎn)坐標(biāo)分別為(0,4),(0,-4),求A點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列命題中正確的是______.
①如果冪函數(shù)y=(m2-3m+3)xm2-m-2的圖象不過原點(diǎn),則m=1或m=2;
②定義域?yàn)镽的函數(shù)一定可以表示成一個(gè)奇函數(shù)與一個(gè)偶函數(shù)的和;
③已知直線a、b、c兩兩異面,則與a、b、c同時(shí)相交的直線有無數(shù)條;
④方程
y-3
x-2
=
y-1
x+3
表示經(jīng)過點(diǎn)A(2,3)、B(-3,1)的直線;
⑤方程
x2
2+m
-
y2
m+1
=1表示的曲線不可能是橢圓.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知某橢圓的焦點(diǎn)是F1(-4,0)、F2(4,0),過點(diǎn)F2并垂直于x軸的直線與橢圓的一個(gè)交點(diǎn)為B,且|F1B|+|F2B|=10,橢圓上不同的兩點(diǎn)A(x1,y1)、C(x2,y2)滿足條件:|F2A|、|F2B|、|F2C|成等差數(shù)列.
(Ⅰ)求該橢圓的方程;
(Ⅱ)求弦AC中點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是離心率為
2
2
的橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點(diǎn),直線l:x=-
1
2
將線段F1F2分成兩段,其長度之比為1:3.設(shè)A,B是C上的兩個(gè)動點(diǎn),線段AB的中垂線與C交于P,Q兩點(diǎn),線段AB的中點(diǎn)M在直線l上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)求
F2P
F2Q
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

與雙曲線
x2
3
-
y2
1
=1
共焦點(diǎn)且過點(diǎn)(2
3
,
3
)
的橢圓方程為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的一個(gè)頂點(diǎn)為A(0,-1),焦點(diǎn)在x軸上.若右焦點(diǎn)到直線x-y+2
2
=0的距離為3.
(1)求橢圓的方程;
(2)設(shè)橢圓與直線y=kx+m(k≠0)相交于不同的兩點(diǎn)M、N.當(dāng)|AM|=|AN|時(shí),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案