在平面直角坐標系xOy中,直線y=1與函數(shù)y=3sin
π
2
x(0≤x≤10)的圖象所有交點的橫坐標之和為
 
考點:函數(shù)y=Asin(ωx+φ)的圖象變換
專題:三角函數(shù)的圖像與性質(zhì)
分析:依題意,易求y=3sin
π
2
x的周期為4,作出當(dāng)0≤x≤10時的函數(shù)圖象,從而可得線y=1與函數(shù)y=3sin
π
2
x(0≤x≤10)的圖象所有交點的橫坐標之和.
解答: 解:∵y=3sin
π
2
x的周期T=
π
2
=4,
∴當(dāng)0≤x≤10時,其圖象如下:

由圖知,直線y=1與正弦曲線y=3sin
π
2
x(0≤x≤10)相交于A、B、C、D、E、F6個點,其橫坐標如圖所示,
則x1+x2=2,x3+x4=10,x5+x6=18,
∴所有交點的橫坐標之和為2+10+18=30.
故答案為:30.
點評:本題考查正弦函數(shù)的圖象與性質(zhì),著重考查其周期性,作圖是關(guān)鍵,也是難點,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,已知a2=3,a5=a2+6,數(shù)列{bn}滿足bn+1=2bn-1(n∈N*),且b1=3.
(Ⅰ)求通項公式an,bn;
(Ⅱ)設(shè)數(shù)列{
2
anan+1
}的前n項和為Sn,試比較Sn與1-
1
bn
的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求曲線y=x2與直線y=x,y=2x所圍成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{An}:a1,a2,a3,…,an(n∈N*,n≥2)滿足a1=an=0,且當(dāng)2≤k≤n(k∈N)時,(ak-ak-12=1,記S(An)=
n
i=1
ai
(Ⅰ)寫出S(A5)的所有可能的值;      
(Ⅱ)求S(An)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=(m2-m-1)xm2-2m-2是冪函數(shù),且在x∈(0,+∞)上為增函數(shù),則實數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={y|y=x3,x∈[1,2]},集合B={x|lnx-ax+2>0},且A⊆B,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+
1
x-1
,曲線y=f(x)過點P(2,f(2))處的切線與直線x=1和直線y=x所圍三角形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若正實數(shù)x,y滿足x+2y+4=4xy,且不等式(x+2y)a2+2a+2xy-34≥0恒成立,則實數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是公比為-
2
3
的等比數(shù)列,{bn}是首項為12的等差數(shù)列.現(xiàn)已知a9>b9且a10>b10,則以下結(jié)論中一定成立的是
 
.(請?zhí)顚懰姓_選項的序號).
①a9•a10<0; 
②b10>0; 
③b9>b10; 
④a9>a10

查看答案和解析>>

同步練習(xí)冊答案