精英家教網 > 高中數學 > 題目詳情

由公比為q的等比數列,…依次相鄰兩項的乘積組成的數列,,…是

[  ]

A.等差數列
B.以q為公比的等比數列
C.以為公比的等比數列
D.以2q為公比的等比數列
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

19、已知數列{an}(n為正整數)是首項是a1,公比為q的等比數列.
(1)求和:a1C20-a2C21+a3C22,a1C30-a2C31+a3C32-a4C33
(2)由(1)的結果歸納概括出關于正整數n的一個結論,并加以證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}(n為正整數)是首項是a1,公比為q的等比數列.
(1)求和:a1C20-a2C21+a3C22,a1C30-a2C31+a3C32-a4C33;
(2)由(1)的結果歸納概括出關于正整數n的一個結論,并加以證明.
(3)設q≠1,Sn是等比數列{an}的前n項和,求:S1Cn0-S2Cn1+S3Cn2-S4Cn3+…+(-1)nSn+1Cnn

查看答案和解析>>

科目:高中數學 來源: 題型:013

由公比為q的等比數列,…依次相鄰兩項的乘積組成的數列,,,…是

[  ]

A.等差數列

B.以q為公比的等比數列

C.以為公比的等比數列

D.以2q為公比的等比數列

查看答案和解析>>

科目:高中數學 來源:2011-2012學年山東省菏澤市高三5月高考沖刺題理科數學試卷(解析版) 題型:解答題

已知是公差為d的等差數列,是公比為q的等比數列

(Ⅰ)若 ,是否存在,有?請說明理由;

(Ⅱ)若(a、q為常數,且aq0)對任意m存在k,有,試求a、q滿足的充要條件;

(Ⅲ)若試確定所有的p,使數列中存在某個連續(xù)p項的和式數列中的一項,請證明.

【解析】第一問中,由,整理后,可得、,為整數不存在,使等式成立。

(2)中當時,則

,其中是大于等于的整數

反之當時,其中是大于等于的整數,則,

顯然,其中

滿足的充要條件是,其中是大于等于的整數

(3)中設為偶數時,式左邊為偶數,右邊為奇數,

為偶數時,式不成立。由式得,整理

時,符合題意。當,為奇數時,

結合二項式定理得到結論。

解(1)由,整理后,可得、為整數不存在、,使等式成立。

(2)當時,則,其中是大于等于的整數反之當時,其中是大于等于的整數,則,

顯然,其中

滿足的充要條件是,其中是大于等于的整數

(3)設為偶數時,式左邊為偶數,右邊為奇數,

為偶數時,式不成立。由式得,整理

時,符合題意。當為奇數時,

   由,得

為奇數時,此時,一定有使上式一定成立。為奇數時,命題都成立

 

查看答案和解析>>

同步練習冊答案