(1)求A1B與平面ABD所成角的大。
(2)求點A1到平面AED的距離.
解析:由于題目中給出直三棱柱及∠ACB=90°,從而可以判斷AC、BC、CC1三直線兩兩互相垂直,由此可以考慮建立空間直角坐標(biāo)系,將兩個問題都轉(zhuǎn)化到向量的有關(guān)計算中去,也可以用自由向量求解,第(2)題還可以利用函數(shù)的最值來求解.?
(1)方法一:建立如圖所示的空間直角坐標(biāo)系,原點為C點,設(shè)CA=2a,則C(0,0,0),A(2a,0,0),B(0,2a,0),?D(0,0,1)?,A1(2a,0,2),E(a,a,1),G(,,),?
∴=(,,),=(0,-2a,1).?
∵EG⊥面ABD,∴·=0.?
∴-a2+=0,即a=1.?
∴=(2,-2,2),=(,-,).?
∴·=,||=2,||=.?
∵GE⊥平面ABD,∴BG是BE在面ABD上的射影,即∠A1BG是A1B與平面ABD所成的角.
∴cos∠A1BG=,A1B與平面ABD所成角是arccos.?
方法二:(法向量法)(接方法一)設(shè)平面ABD的法向量為n=(λ,u,1),?
∵=(-2a,0,1),=(0,-2a,1),n⊥平面ABD,∴n·=0,n·=0.?
∴-2λa+1=0.∴-2ua+1=0.?
∴λ=u=.∴n=(,,1).?
又∵=(,,),而EG⊥平面ABD,?
∴·=0.∴-a2+=0.?
∴a=1.∴n=(,,1), =(-2,2,-2).?
∴n與的夾角為〈n, 〉.?
∴cos〈n, 〉=.?
設(shè)A1B與平面ABD所成角為θ,?
∴sinθ=|cos〈n, 〉|=,cosθ=.?
∴θ=arcsin=arccos.?
方法三:(自由向量法)設(shè)=a,=b, =c,?
∴=b-a, =-=b-a-c, =a+c-b,,(a+c-2b).?
∴?
=(a+b+2c).?
又∵GE⊥面ABD,∴GE·BD=0.?
∴(a+b+2c)·(c-2b)=0.?
∴a·c+b·c+2c-2a·b-2b2-4b·c=0.?
∵a,b,c兩兩垂直,∴a·b=b·c=c·a=0.?
∴b2=c2.∴|b|=|c|.∵|c|=2,∴|a|=|b|=2.?
∵=(a+c-b)·(2a+c-4b)=(c2+4b2+2a2)=|c|2=,?
又||2=(a+c-b)2=(a2+c2+b2)?
=|a|2=3,?
∴||=.?
又||=(2a+c-4b)2=(4a2+c2+16b2)?
=|a|2=,?
∴||=.?
∵GE⊥平面ABD,
∴BG是BE在面ABD上的射影.?
∴∠GBE是A1B與面ABD所成的角.?
∴cos∠GBE=.?
∴∠GBE=arccos.?
(2)方法一:由(1)的方法一有A(2,0,0),A1(2,0,2),E(1,1,1),D(0,0,1).?
=(-1,1,1)·(-1,-1,0)=0, =(0,0,2)·(-1,-1,0)=0,∴ED⊥平面AA1E.?
又∵ED平面AED,?
∴平面AED⊥平面AA1E,交線為AE.?
∴點A1在平面AED上的射影K在AE上.?
設(shè)=λ,則=(-λ,λ,λ-2),?
由 =0,即λ+λ+λ-2=0,∴λ=.?
∴=(-,,-).
∴||=.?
故A1到平面AED的距離為.?
方法二:(法向量法)設(shè)平面ADE的法向量為?
n=(x,y,1),且=(-2,0,1),=(1,1,0),=(0,0,2).?
故有n·=0,n·=0,即?
解之,得∴n=(0.5,-0.5,1).?
設(shè)A1點到平面AED的距離為d,則?
d=.?
方法三:(自由向量法)由(1)的方法三知?
|a|=|b|=|c|=2,?
,?
.?
設(shè)點M∈面AED,?
∴=x+y=[(x-y)a+(-x-y)b-xc],?
∴??
=[(x-y)a+(-x-y)b-xc]+ (b-c-a)?
=[(x-y-1)a+(-x-y+1)b-(x+1)c].?
∵a·b=b·c=c·a=0,?
∴||2=[(x-y-1)a-(x+y-1)b-(x+1)c]2?
=[(x-y-1)2a2+(x+y-1)2b2+(x+1)2c2]?
=[(x-y-1)2+(x+y-1)2+(x+1)2]a2?
=2(x-1)2-2(x-1)y+2(x-1)y+y2+(x+1)2?
=3x2-2x+y2+3?
=3(x-)2+y2+.?
∴當(dāng)且僅當(dāng)x=,且y=0時,||2有最小值.?
∴||=.
∴點A1到平面AED的距離為.
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年四川省招生統(tǒng)一考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題共l2分)
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[來源:]
P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011年高考試題數(shù)學(xué)理(四川卷)解析版 題型:解答題
(本小題共l2分)
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一
P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:四川省高考真題 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一點,P是AD的延長線與A1C1的延長線的交點,且PB1∥平面BDA.
(I)求證:CD=C1D:
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求點C到平面B1DP的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com