由冪函數(shù)y=x
1
2
和冪函數(shù)y=x3圖象圍成的封閉圖形面積為( 。
A、
1
12
B、
1
4
C、
1
3
D、
5
12
考點(diǎn):定積分在求面積中的應(yīng)用
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:聯(lián)立兩個(gè)解析式得到兩曲線的交點(diǎn)坐標(biāo),然后對(duì)函數(shù)解析式求定積分即可得到結(jié)論.
解答: 解:兩冪函數(shù)圖象交點(diǎn)坐標(biāo)是(0,0),(1,1),
所以S=
1
0
(x
1
2
-x3)dx=
5
12

故選:D
點(diǎn)評(píng):本題求兩條曲線圍成的曲邊圖形的面積,著重考查了定積分的幾何意義和積分計(jì)算公式等知識(shí),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=f(x)圖象上不同兩點(diǎn)A(x1,y1),B(x2,y2)處的切線的斜率分別是kA,kB,規(guī)定φ(A,B)=
|kA-kB|
|AB|
叫曲線y=f(x)在點(diǎn)A與點(diǎn)B之間的“彎曲度”,給出以下命題:
(1)函數(shù)y=x3-x2+1圖象上兩點(diǎn)A、B的橫坐標(biāo)分別為1,2,則φ(A,B)>
3
;
(2)存在這樣的函數(shù),圖象上任意兩點(diǎn)之間的“彎曲度”為常數(shù);
(3)設(shè)點(diǎn)A、B是拋物線,y=x2+1上不同的兩點(diǎn),則φ(A,B)≤2;
(4)設(shè)曲線y=ex上不同兩點(diǎn)A(x1,y1),B(x2,y2),且x1-x2=1,若t•φ(A,B)<1恒成立,則實(shí)數(shù)t的取值范圍是(-∞,1);
以上正確命題的序號(hào)為
 
(寫出所有正確的)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:sinx≤-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2cosx(x∈[-π,π])的圖象大致為(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)四面體的頂點(diǎn)都在球面上,它們的正視圖、側(cè)視圖、俯視圖都是右圖.圖中圓內(nèi)有一個(gè)以圓心為中心邊長(zhǎng)為1的正方形.則這個(gè)四面體的外接球的表面積是( 。
A、πB、3πC、4πD、6π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:四棱錐S-ABCD的底面是邊長(zhǎng)為2的正方形,點(diǎn)S,A,B,C,D均在半徑為
3
的同一半球面上,則當(dāng)四棱錐S-ABCD的體積最大時(shí),底面ABCD的中心與頂點(diǎn)S之間的距離是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
2
cos(ωx+ϕ)對(duì)任意的x∈R,都有f(
π
6
-x)=f(
π
6
+x),若函數(shù)g(x)=3sin(ωx+ϕ)-2,則g(
π
6
)的值是( 。
A、1
B、-5或3
C、-2
D、
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正三角形A1B1C1邊長(zhǎng)為a,分別取B1C1,C1A1,A1B1的中點(diǎn)A2,B2,C2,記a1是正三角形A1B1C1除去△A2B2C2后剩下的三個(gè)內(nèi)切圓面積之和,依此類推:記an是△AnBnCn除去△An+1Bn+1Cn+1后剩下的三個(gè)三角形內(nèi)切圓面積之和,從而得到數(shù)列{an},設(shè)這個(gè)數(shù)列{an}的前n項(xiàng)和Sn
(1)求an 和a1;
(2)求Sn,并證明Sn
πα2
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+2cos2x-1
(Ⅰ)求函數(shù)f(x)的最小正周期和函數(shù)f(x)的單調(diào)區(qū)間.
(Ⅱ)在△ABC中,角A,B,C所對(duì)的邊分別是a,b,c,若f(A)=1,sinB=2sin(π-C)△ABC的面積為2
3
,求邊長(zhǎng)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案