已知向量a=(cos α,sin α),b=(cos x,sin x),c=(sin x+2sin α,cos x+2cos α),其中0<αx<π.
(1)若α,求函數(shù)f(x)=b·c的最小值及相應(yīng)x的值;
(2)若ab的夾角為,且ac,求tan 2α的值.

(1)最小值為-,相應(yīng)x的值為(2)-

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知向量,,設(shè)函數(shù)
(1)求函數(shù)的最小正周期;
(2)求函數(shù)在區(qū)間上的最小值和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)a,b=(4sinx,cosx-sinx),f(x)=a·b.
(1)求函數(shù)f(x)的解析式;
(2)已知常數(shù)ω>0,若y=f(ωx)在區(qū)間上是增函數(shù),求ω的取值范圍;
(3)設(shè)集合A=,B={x||f(x)-m|<2},若AB,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

函數(shù)f(x)=Asin +1(A>0,ω>0)的最大值為3,其圖象相鄰兩條對(duì)稱軸之間的距離為.
(1)求函數(shù)f(x)的解析式;
(2)設(shè)α,f=2,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=sin(2x+).
(1)求函數(shù)y=f(x)的單調(diào)遞減區(qū)間.
(2)畫出函數(shù)y=f(x)在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a>0,函數(shù)f(x)=-2asin(2x+)+2a+b,當(dāng)x∈[0,]時(shí),-5≤f(x)≤1.
(1)求常數(shù)a,b的值.
(2)設(shè)g(x)=f(x+)且lg g(x)>0,求g(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=2sin ωx·cos ωx+2cos2ωx(其中ω>0),且函數(shù)f(x)的周期為π.
(1)求ω的值;
(2)將函數(shù)yf(x)的圖象向右平移個(gè)單位長度,再將所得圖象各點(diǎn)的橫坐標(biāo)縮小到原來的倍(縱坐標(biāo)不變)得到函數(shù)yg(x)的圖象,求函數(shù)g(x)在上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知2rad的圓心角所對(duì)的弦長為2,求這個(gè)圓心角所對(duì)的弧長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=2sin (0≤x≤5),點(diǎn)A、B分別是函數(shù)yf(x)圖象上的最高點(diǎn)和最低點(diǎn).
(1)求點(diǎn)A、B的坐標(biāo)以及·的值;
(2)設(shè)點(diǎn)A、B分別在角αβ的終邊上,求tan(α-2β)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案