已知函數(shù)(為常數(shù)).
(1)當(dāng)時(shí),求的單調(diào)遞減區(qū)間;
(2)若,且對(duì)任意的,恒成立,求實(shí)數(shù)的取值范圍.
(1)函數(shù)的單調(diào)遞減區(qū)間為;(2)實(shí)數(shù)的取值范圍是.
解析試題分析:(1)將代入函數(shù)解析式并求出相應(yīng)的導(dǎo)數(shù),利用導(dǎo)數(shù)并結(jié)合函數(shù)的定義域便可求出函數(shù)的單調(diào)遞減區(qū)間;(2)構(gòu)造新函數(shù),將問(wèn)題轉(zhuǎn)化為“對(duì)任意時(shí),恒成立”,進(jìn)而轉(zhuǎn)化為,圍繞這個(gè)核心問(wèn)題結(jié)合分類討論的思想求出參數(shù)的取值范圍.
試題解析:(1)的定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/42/5/oozz32.png" style="vertical-align:middle;" />,,
當(dāng)時(shí),, 2分
由及,解得,所以函數(shù)的單調(diào)遞減區(qū)間為 4分
(2)設(shè),
因?yàn)閷?duì)任意的,恒成立,所以恒成立,
,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/29/8/113483.png" style="vertical-align:middle;" />,令,得,, 7分
①當(dāng),即時(shí),
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f3/8/1fwpm2.png" style="vertical-align:middle;" />時(shí),,所以在上單調(diào)遞減,
因?yàn)閷?duì)任意的,恒成立,
所以時(shí),,即,
解得,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/09/f/1z5aq2.png" style="vertical-align:middle;" />。所以此時(shí)不存在; 10分
②當(dāng),即時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/90/8/nqfgw1.png" style="vertical-align:middle;" />時(shí),,時(shí),,
所以在上單調(diào)遞增,在上單調(diào)遞減,
因?yàn)閷?duì)任意的,恒成立,所以,且,
即,解得,
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/44/1/bwl0x.png" style="vertical-align:middle;" />,所以此時(shí); 13分
③當(dāng),即時(shí),因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f3/8/1fwpm2.png" style="vertical-align:middle;" />時(shí),,
所以在上單調(diào)遞增,由于,符合題意; 15分
綜上所述,實(shí)數(shù)的取值范圍是 16分
考點(diǎn):函數(shù)的單調(diào)區(qū)間與導(dǎo)數(shù)、不等式恒成立、分類討論
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù).
(1)當(dāng)時(shí),證明:函數(shù)不是奇函數(shù);
(2)設(shè)函數(shù)是奇函數(shù),求與的值;
(3)在(2)條件下,判斷并證明函數(shù)的單調(diào)性,并求不等式的解集.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
對(duì)于定義域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/e5/f/1dd8p3.png" style="vertical-align:middle;" />的函數(shù),如果存在區(qū)間,同時(shí)滿足:
①在內(nèi)是單調(diào)函數(shù);②當(dāng)定義域是,值域也是,則稱是函數(shù)
的“好區(qū)間”.
(1)設(shè)(其中且),判斷是否存在“好區(qū)間”,并
說(shuō)明理由;
(2)已知函數(shù)有“好區(qū)間”,當(dāng)變化時(shí),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)若在內(nèi)恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)滿足,且 在上恒成立.
(1)求的值;
(2)若,解不等式;
(3)是否存在實(shí)數(shù),使函數(shù)在區(qū)間上有最小值?若存在,請(qǐng)求出實(shí)數(shù)的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)當(dāng)時(shí),討論函數(shù)的單調(diào)性:
(2)若函數(shù)的圖像上存在不同兩點(diǎn),設(shè)線段的中點(diǎn)為,使得在點(diǎn)處的切線與直線平行或重合,則說(shuō)函數(shù)是“中值平衡函數(shù)”,切線叫做函數(shù)的“中值平衡切線”。試判斷函數(shù)是否是“中值平衡函數(shù)”?若是,判斷函數(shù)的“中值平衡切線”的條數(shù);若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)F(x)=3a+2bx+c,若a+b+c=0,且F(0)>0,F(xiàn)(1)>0.
求證:a>0,且—2<<—1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),,
(1)若為奇函數(shù),求的值;
(2)若=1,試證在區(qū)間上是減函數(shù);
(3)若=1,試求在區(qū)間上的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com