設(shè)x,y滿足約束條件
x+2y≤4
x-y≤1
x+2≥0
,則目標(biāo)函數(shù)z=y-x的最大值是( 。
A、5B、-1C、-5D、0
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用目標(biāo)函數(shù)的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
由z=y-x得y=x+z,
平移直線y=x+z,由圖象可知當(dāng)直線y=x+z經(jīng)過(guò)點(diǎn)A時(shí),
直線y=x+z的截距最大,此時(shí)z最大,
x=-2
x+2y=4
,解得
x=-2
y=3
,
即A(-2,3),此時(shí)z=3-(-2)=5,
故選:A.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用至少2種方法求函數(shù)y=
sinx
cosx-2
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x+1,x≤0
2x-x,x>0
,則f(f(0))的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)Sn是等比數(shù)列{an}的前n項(xiàng)和,S4=5S2,則
a3a8
a52
的值為( 。
A、-2或-1B、1或2
C、±2或-1D、±1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
,
b
是兩個(gè)非零向量,則使
a
b
=|
a
||
b
|成立的一個(gè)必要非充分條件是( 。
A、
a
=
b
B、
a
b
C、
a
b
(λ>0)
D、
a
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}滿足an>0,n∈N+,且a3a2n-3=22n(n≥2),則當(dāng)n≥1時(shí),log2a1+log2a2+…+log2a2n-1=( 。
A、n(2n-1)
B、(n+1)2
C、n2
D、(n-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列結(jié)論中,正確的是( 。
A、“?x∈Q,x2-5=0”的否定是假命題
B、“?x∈R,x2+1<1”的否定是“?x∈R,x2+1<1”
C、“2≤2”是真命題
D、“?x∈R,x2+1≠0”的否定是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足an+1=2an(n∈N+)且a2=1,則log2a2014=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=4 x-
1
2
-a•2x+
a2
2
+1(0≤x≤2)的最小值為g(a)
(1)求g(a)的解析式;
(2)求g(a)的值域.

查看答案和解析>>

同步練習(xí)冊(cè)答案