【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)存在極大值,且極大值為1,證明:.
【答案】(1)答案見解析;(2)證明見解析.
【解析】
【試題分析】(1)當(dāng)時(shí),,故函數(shù)在上單調(diào)遞增.當(dāng)或時(shí),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)區(qū)間.(2) 由(Ⅰ)可知若函數(shù)存在極大值,則,且,解得, 由此求得函數(shù)的表達(dá)式.將所要證明的不等式轉(zhuǎn)化為證.構(gòu)造函數(shù),利用二階導(dǎo)數(shù)求得函數(shù)的最小值大于或等于零.
【試題解析】
(Ⅰ)由題意,
當(dāng)時(shí),,函數(shù)在上單調(diào)遞增;
當(dāng)時(shí),函數(shù)單調(diào)遞增,,故當(dāng)時(shí),,當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞減,函數(shù)在上單調(diào)遞增;
當(dāng)時(shí),函數(shù)單調(diào)遞減,,故當(dāng)時(shí),,當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞增,函數(shù)在上單調(diào)遞減.
(Ⅱ)由(Ⅰ)可知若函數(shù)存在極大值,則,且,解得, 故此時(shí),
要證,只須證,及證即可,
設(shè),.
,令
,所以函數(shù)單調(diào)遞增,
又,,
故在上存在唯一零點(diǎn),即.
所以當(dāng),, 當(dāng)時(shí),,所以函數(shù)在上單調(diào)遞減,函數(shù)在上單調(diào)遞增,
故,
所以只須證即可,
由,得,
所以,又,所以只要即可,
當(dāng)時(shí),
所以 與矛盾,
故,得證.
(另證)
當(dāng)時(shí),
所以 與矛盾;
當(dāng)時(shí),
所以 與矛盾;
當(dāng)時(shí),
得,故 成立,
得,所以,即.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,證明:;
(2)若,有且只有個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍;
(3)若,,,求正整數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,試確定此二次函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,試確定此二次函數(shù)的解析式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某房地產(chǎn)公司新建小區(qū)有A、B兩種戶型住宅,其中A戶型住宅每套面積為100平方米,B戶型住宅每套面積為80平方米,該公司準(zhǔn)備從兩種戶型住宅中各拿出12套銷售給內(nèi)部員工,表是這24套住宅每平方米的銷售價(jià)格:(單位:萬元平方米):
房號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
A戶型 | 2.6 | 2.7 | 2.8 | 2.8 | 2.9 | 3.2 | 2.9 | 3.1 | 3.4 | 3.3 | 3.4 | 3.5 |
B戶型 | 3.6 | 3.7 | 3.7 | 3.9 | 3.8 | 3.9 | 4.2 | 4.1 | 4.1 | 4.2 | 4.3 | 4.5 |
(1)根據(jù)表格數(shù)據(jù),完成下列莖葉圖,并分別求出A,B兩類戶型住宅每平方米銷售價(jià)格的中位數(shù);
A戶型 | B戶型 | |
2. | ||
3. | ||
4. |
(2)該公司決定對(duì)上述24套住房通過抽簽方式銷售,購(gòu)房者根據(jù)自己的需求只能在其中一種戶型中通過抽簽方式隨機(jī)獲取房號(hào),每位購(gòu)房者只有一次抽簽機(jī)會(huì),小明是第一位抽簽的員工,經(jīng)測(cè)算其購(gòu)買能力最多為320萬元,抽簽后所抽得住房?jī)r(jià)格在其購(gòu)買能力范圍內(nèi)則確定購(gòu)買,否則,將放棄此次購(gòu)房資格,為了使其購(gòu)房成功的概率更大,他應(yīng)該選擇哪一種戶型抽簽?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)定義在[0,1]上,并且同時(shí)滿足以下兩個(gè)條件的函數(shù)f(x)稱為G函數(shù).
①對(duì)任意的x∈[0,1],總有f(x)≥0;
②當(dāng)x1≥0,x2≥0,x1+x2≤1時(shí),總有f(x1+x2)≥f(x1)+f(x2)成立.已知函數(shù)g(x)=x2與h(x)=2x﹣b是定義在[0,1]上的函數(shù).
(1)試問函數(shù)g(x)是否為G函數(shù)?并說明理由;
(2)若函數(shù)h(x)是G函數(shù),求實(shí)數(shù)b組成的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為推動(dòng)文明城市創(chuàng)建,提升城市整體形象,2018年12月30日鹽城市人民政府出臺(tái)了《鹽城市停車管理辦法》,2019年3月1日起施行.這項(xiàng)工作有利于市民養(yǎng)成良好的停車習(xí)慣,幫助他們樹立綠色出行的意識(shí),受到了廣大市民的一致好評(píng).現(xiàn)從某單位隨機(jī)抽取80名職工,統(tǒng)計(jì)了他們一周內(nèi)路邊停車的時(shí)間t(單位:小時(shí)),整理得到數(shù)據(jù)分組及頻率分布直方圖如下:
(1)從該單位隨機(jī)選取一名職工,試估計(jì)這名職工一周內(nèi)路邊停車的時(shí)間少于8小時(shí)的概率;
(2)求頻率分布直方圖中a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)設(shè)時(shí),求的導(dǎo)函數(shù)的遞增區(qū)間;
(2)設(shè) ,求的單調(diào)區(qū)間;
(3)若 對(duì) 恒成立,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com