A.(幾何證明選講選做題)


如圖,已知AB為圓O的直徑,BC切圓O于點(diǎn)B,AC交圓O于點(diǎn)PE為線段BC的中點(diǎn).求證:OPPE

B.(矩陣與變換選做題)
已知M,N,設(shè)曲線y=sinx在矩陣MN對(duì)應(yīng)的變換作用下得到曲線F,求F的方程.
C.(坐標(biāo)系與參數(shù)方程選做題)
在平面直角坐標(biāo)系xOy中,直線m的參數(shù)方程為t為參數(shù));在以O為極點(diǎn)、射線Ox為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為ρsinθ=8cosθ.若直線m與曲線C交于A、B兩點(diǎn),求線段AB的長.
D.(不等式選做題)
設(shè)x,y均為正數(shù),且xy,求證:2x≥2y+3.

A、對(duì)于平面幾何中垂直的證明,一般采用相似法,或者是圓內(nèi)的性質(zhì)來得到,該試題主要是分析得到弦切角定理的運(yùn)用。
B、曲線F的方程為.
C、
D、對(duì)于不等式的證明,一般可以運(yùn)用作差法也可以結(jié)合均值不等式的性質(zhì)來得到,難點(diǎn)是構(gòu)造定值。

解析試題分析:A. 解:因?yàn)?i>AB是圓O的直徑,
所以∠APB=90°,從而∠BPC=90°.          2分    
在△BPC中,因?yàn)?i>E是邊BC的中點(diǎn),所以BEEC,從
BEEP,因此∠1=∠3.                  5分   
又因?yàn)?i>B、P為圓O上的點(diǎn),所以OBOP,從而∠2= 
∠4.                                     7分
因?yàn)?i>BC切圓O于點(diǎn)B,所以∠ABC=90°,即∠1+∠2=90°,
從而∠3+∠4=90°,于是∠OPE=90°.                              9分
所以OPPE.                                                 10分
B. 解:由題設(shè)得.                          4分
設(shè)所求曲線F上任意一點(diǎn)的坐標(biāo)為(x,y),上任意一點(diǎn)的坐標(biāo)為,則
MN,解得 .                7分
代入,化簡得.
所以,曲線F的方程為.                                 10分
C. 解:直線m的普通方程為.                                   2分
曲線C的普通方程為.                                       4分
由題設(shè)直線m與曲線C交于A、B兩點(diǎn),可令,.
聯(lián)立方程,解得,則有.  7分
于是.
.                                                  10分
D. 證明:由題設(shè)x>0,y>0,xy,可得xy>0.                        2分
因?yàn)?x-2y=2(xy)+=(xy)+(xy)+ . 
5分
又(xy)+(xy)+,等號(hào)成立條件是xy=1 . 
9分
所以,2x-2y≥3,即2x≥2y+3.            10分
考點(diǎn):幾何證明,不等式,參數(shù)方程
點(diǎn)評(píng):解決這類問題,一般要結(jié)合基本的知識(shí)來得到,試題難度不大,屬于基礎(chǔ)題。注意積累該方面的做題方法。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,的直徑,弦垂直,并與相交于點(diǎn),點(diǎn)為弦上異于點(diǎn)的任意一點(diǎn),連結(jié)、并延長交于點(diǎn)、.
⑴ 求證:、、、四點(diǎn)共圓;
⑵ 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖所示,已知PA與⊙O相切,A為切點(diǎn),過點(diǎn)P的割線交圓于B、C兩點(diǎn),弦CD∥AP,AD、BC相交于點(diǎn)E,F(xiàn)為CE上一點(diǎn),且DE2 = EF·EC.

(Ⅰ)求證:CE·EB = EF·EP;
(Ⅱ)若CE:BE = 3:2,DE = 3,EF = 2,求PA的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖AB為圓O直徑,P為圓O外一點(diǎn),過P點(diǎn)作PC⊥AB,垂是為C,PC交圓O于D點(diǎn),PA交圓O于E點(diǎn),BE交PC于F點(diǎn)。

(I)求證:∠PFE=∠PAB (II)求證:CD2=CF·CP

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,△ABC內(nèi)接于⊙O,AB =AC,直線MN切⊙O于點(diǎn)C,弦BD∥MN,AC與BD相交于點(diǎn)E.
(1)求證:△ABE≌△ACD;
(2)若AB =6,BC =4,求AE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

[選修4 - 1:幾何證明選講](本小題滿分10分)
如圖,在梯形中,∥BC,點(diǎn),分別在邊上,設(shè)相交于點(diǎn),若,,四點(diǎn)共圓,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(滿分10分)
如下圖,AB、CD是圓的兩條平行弦,BE//ACBECDE、交圓于F,過A點(diǎn)的切線交DC的延長線于P,PC=ED=1,PA=2.

(I)求AC的長;
(II)求證:BEEF

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

選修4-1:幾何證明選講
如圖,圓O1與圓O2相交于A、B兩點(diǎn),AB是圓O2的直徑,過A點(diǎn)作圓O1的切線交圓O2于點(diǎn)E,并與BO1的延長線交于點(diǎn)P,PB分別與圓O1、圓O2交于C,D兩點(diǎn)。

求證:(Ⅰ)PA·PD=PE·PC;(Ⅱ)AD=AE。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,是⊙的直徑,、是⊙上的點(diǎn),的角平分線,過點(diǎn)點(diǎn)作,交的延長線于點(diǎn),,垂足為點(diǎn),

⑴求證:是⊙的切線    
⑵求證:

查看答案和解析>>

同步練習(xí)冊(cè)答案