(坐標(biāo)系與參數(shù)方程選做題)如圖所示的極坐標(biāo)系中,以M(4,
π
6
)為圓心,半徑r=1的圓M的極坐標(biāo)方程是
 
考點:簡單曲線的極坐標(biāo)方程
專題:直線與圓
分析:由點M(4,
π
6
),利用極坐標(biāo)與直角坐標(biāo)的互化公式可得M(2
3
,2)
.即可得到⊙M的直角坐標(biāo)方程為:(x-2
3
)2+(y-2)2=1
.把x=ρcosθ,y=ρsinθ代入上述方程即可得出.
解答: 解:由點M(4,
π
6
),可得xM=4cos
π
6
=2
3
,yM=4sin
π
6
=2.
M(2
3
,2)

∴⊙M的直角坐標(biāo)方程為:(x-2
3
)2+(y-2)2=1

把x=ρcosθ,y=ρsinθ代入上述方程可得:(ρcosθ-2
3
)2+(ρsinθ-2)2=1

化為ρ2-8ρcos(θ-
π
6
)+15=0

故答案為:ρ2-8ρcos(θ-
π
6
)+15=0
點評:本題考查了極坐標(biāo)與直角坐標(biāo)的互化公式,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點A(a,b)隨機(jī)分布在
0≤a≤1
0≤b≤1
,構(gòu)成的區(qū)域內(nèi),則點A(a,b)落在圓a2+b2=
1
2
外的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若一個底面是正三角形的三棱柱的三視圖如圖所示,則其體積等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,前n項和為Sn,且Sn=
n(n+1)
2

(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=
an
2n
,數(shù)列{bn}前n項和為Tn,比較Tn與2的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

lim
n→∞
n2+1
2n2-n
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB是圓O的直徑,C是AB延長線上一點,CD切圓O于D,CD=4,AB=3BC,則圓O的半徑長是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若A、B為互斥事件,給出下列結(jié)論
①P(A)+P(B)<1;
②P(A)+P(B)=1;
③P(A)+P(B)≤1;
④P(A•B)=0,
則正確結(jié)論個數(shù)為( 。
A、4B、3C、2D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)空氣質(zhì)量指數(shù)AQI(為整數(shù))的不同,可將空氣質(zhì)量分級如下表:
AQI(數(shù)值) 0~50 51~100 101~150 151~200 201~300 >300
空氣質(zhì)量級別 一級 二級 三級 四級 五級 六級
空氣質(zhì)量類別 優(yōu) 輕度污染 中度污染 重度污染 嚴(yán)重污染
空氣質(zhì)量類別顏色 綠色 黃色 橙色 紅色 紫色 褐紅色
某市2013年10月1日-10月30日,對空氣質(zhì)量指數(shù)AQI進(jìn)行監(jiān)測,獲得數(shù)據(jù)后得到如圖的條形圖:
(1)估計該城市本月(按30天計)空氣質(zhì)量類別為中度污染的概率;
(2)在空氣質(zhì)量類別顏色為紫色和褐紅色的數(shù)據(jù)中任取2個,求至少有一個數(shù)據(jù)反映的空氣質(zhì)量類別顏色為褐紅色的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2ωx+
3
sinωxcosωx-
1
2
(ω>0)
的最小正周期為π.
(1)求ω值及f(x)的單調(diào)遞增區(qū)間;
(2)在△ABC中,a、b、c分別是三個內(nèi)角A、B、C所對邊,若a=1,b=
2
,f(
A
2
)=
3
2
,求B的大。

查看答案和解析>>

同步練習(xí)冊答案