已知直線l的方程為,且直線l與x軸交于點(diǎn)M,圓與x軸交于兩點(diǎn)(如圖).(I)過(guò)M點(diǎn)的直線交圓于兩點(diǎn),且圓孤恰為圓周的,求直線的方程;(II)求以l為準(zhǔn)線,中心在原點(diǎn),且與圓O恰有兩個(gè)公共點(diǎn)的橢圓方程;

(III)過(guò)M點(diǎn)的圓的切線交(II)中的一個(gè)橢圓于兩點(diǎn),其中兩點(diǎn)在x軸上方,求線段CD的長(zhǎng).

(I)為圓周的

點(diǎn)到直線的距離為

設(shè)的方程為

的方程為

(II)設(shè)橢圓方程為,半焦距為c,則

橢圓與圓O恰有兩個(gè)不同的公共點(diǎn),則

當(dāng)時(shí),所求橢圓方程為;

當(dāng)時(shí),

所求橢圓方程為

(III)設(shè)切點(diǎn)為N,則由題意得,橢圓方程為

中,,則

的方程為,代入橢圓中,整理得

設(shè),則

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知直線l的方程為x=-2,且直線l與x軸交于點(diǎn)M,
圓O:x2+y2=1與x軸交于A,B兩點(diǎn).
(Ⅰ)過(guò)M點(diǎn)的直線l1交圓于P、Q兩點(diǎn),且圓孤PQ恰為圓周的
14
,求直線l1的方程;
(Ⅱ)求以l為準(zhǔn)線,中心在原點(diǎn),且與圓O恰有兩個(gè)公共點(diǎn)的橢圓方程;
(Ⅲ)過(guò)M點(diǎn)的圓的切線l2交(Ⅱ)中的一個(gè)橢圓于C、D兩點(diǎn),其中C、D兩點(diǎn)在x軸上方,求線段CD的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l的方程為(m2-2m-3)x+(2m2+m-1)y=m+5(m∈R),其傾斜角為
π
4
,則實(shí)數(shù)m的值為( 。
A、
4
3
B、-1
C、-
4
3
D、
4
3
或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l的方程為3x-2y-1=0,數(shù)列{an}的前n項(xiàng)和為Sn,點(diǎn)(an,Sn)在直線l上.
(I)求數(shù)列{an}的通項(xiàng)公式;
(II)bn=
n(2Sn+1)
an
,數(shù)列{bn}的前n項(xiàng)和為Tn,求f(n)=
bn
Tn+24
(n∈N*)
的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選做題:請(qǐng)考生在下列兩題中任選一題作答,若兩題都做,則按所做的第一題評(píng)閱計(jì)分.
(1)(坐標(biāo)系與參數(shù)方程選做題) 在極坐標(biāo)系下,已知直線l的方程為ρcos(θ-
π
3
)=
1
2
,則點(diǎn)M(1,
π
2
)到直線l的距離為
3
-1
2
3
-1
2

(2)(幾何證明選講選做題) 如圖,P為圓O外一點(diǎn),由P引圓O的切線PA與圓O切于A點(diǎn),引圓O的割線PB與圓O交于C點(diǎn).已知AB⊥AC,PA=2,PC=1.則圓O的面積為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線l的方程為4x+3y-12=0,求滿足下列條件的直線l′的方程:
(Ⅰ)l′與l平行且過(guò)點(diǎn)(-1,-3);
(Ⅱ)l′與l垂直且過(guò)點(diǎn)(-1,-3).

查看答案和解析>>

同步練習(xí)冊(cè)答案