(本小題滿(mǎn)分14分)已知拋物線
,橢圓經(jīng)過(guò)點(diǎn)
,它們?cè)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823121219887183.gif" style="vertical-align:middle;" />軸上有共同焦點(diǎn),橢圓的對(duì)稱(chēng)軸是坐標(biāo)軸.(Ⅰ)求橢圓的方程;(Ⅱ)若
是橢圓上的點(diǎn),設(shè)
的坐標(biāo)為
(
是已知正實(shí)數(shù)),求
與
之間的最短距離.
(Ⅰ)
(Ⅱ)
:(1)拋物線的焦點(diǎn)為(1,0)2分設(shè)橢圓方程為
,
則
∴
,
∴橢圓方程為
………6分
(2)設(shè)
,則
………8分
① 當(dāng)
時(shí),
,即
時(shí),
;
② 當(dāng)
時(shí),
,即
時(shí),
;
綜上,
………14分
(注:也可設(shè)
解答,參照以上解答相應(yīng)評(píng)分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
已知雙曲線x2-3y2=3的右焦點(diǎn)為F,右準(zhǔn)線為l,以F為左焦點(diǎn),以l為左準(zhǔn)線的橢圓C的中心為A,又A點(diǎn)關(guān)于直線y=2x的對(duì)稱(chēng)點(diǎn)A’恰好在雙曲線的左準(zhǔn)線上,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
某圓錐曲線C是橢圓或雙曲線,其中心為原點(diǎn),對(duì)稱(chēng)軸為坐標(biāo)軸,且過(guò)
,B(,-),則
A.曲線C可以是橢圓也可以是雙曲線 | B.曲線C一定是雙曲線 |
C.曲線C一定是橢圓 | D.這樣的曲線不存在 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
點(diǎn)
與點(diǎn)
的距離比它到直線
的距離小1,求點(diǎn)
的軌跡。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
(12分)已知圓
(1)直線
A、B兩點(diǎn),若
的方程;
(2)過(guò)圓C上一動(dòng)點(diǎn)M作平行于x軸的直線m,設(shè)m與y軸的交點(diǎn)為N,若向量
,求動(dòng)點(diǎn)Q的軌跡方程,并說(shuō)明此軌跡是什么曲線。
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:解答題
若
在定義域(-1,1)內(nèi)可導(dǎo),且
,點(diǎn)A(1,
(
));B(
(-
),1),
對(duì)任意
∈(-1,1)恒有
成立,試在
內(nèi)求滿(mǎn)足不等式
(sin
cos
)+
(cos
2)>0的
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來(lái)源:不詳
題型:單選題
雙曲線
的離心率為
,雙曲線
的離心率為
,則
+
的最小值為( )
A. | B.2 | C. | D.4 |
查看答案和解析>>