【題目】已知拋物線y2=2px(p>0)上一點(diǎn)P(3,t)到其焦點(diǎn)的距離為4.
(1)求p的值;
(2)過(guò)點(diǎn)Q(1,0)作兩條直線l1 , l2與拋物線分別交于點(diǎn)A、B和C、D,點(diǎn)M,N分別是線段AB和CD的中點(diǎn),設(shè)直線l1 , l2的斜率分別為k1 , k2 , 若k1+k2=3,求證:直線MN過(guò)定點(diǎn).
【答案】解:(1)拋物線y2=2px的焦點(diǎn)為(,0),準(zhǔn)線為x=﹣,
由拋物線的定義可得,3+=4,解得p=2;
(2)證明:由題意知,k1+k2=3,
不妨設(shè)AB的斜率k1=k,則CD的斜率k2=3﹣k,
所以AB的直線方程是:y=k(x﹣1),CD的直線方程是y=(3﹣k)(x﹣1),
設(shè)A(x1 , y1),B(x2 , y2),
由 ,得,k2x2﹣(2k2+4)x+k2=0,
則x1+x2=,x1x2=1,
所以y1+y2=k(x1﹣1)+k(x2﹣1)=k(2+)﹣2k=,
因?yàn)镸是AB的中點(diǎn),所以點(diǎn)M(1+,),
同理可得,點(diǎn)N(1+,),
所以直線MN的方程是:y﹣=(x﹣1﹣),
化簡(jiǎn)得,y=(k﹣k2)(x﹣1)+,令x=1,得y=,
所以直線MN過(guò)定點(diǎn)(1,).
【解析】(1)求得拋物線的焦點(diǎn)和準(zhǔn)線方程,運(yùn)用拋物線的定義,可得p=2;
(2)不妨設(shè)AB的斜率k1=k,求出CD的斜率k2=3﹣k,利用點(diǎn)斜式方程求出直線AB、CD的方程,與拋物線方程聯(lián)立消x得關(guān)于y的一元二次方程,根據(jù)韋達(dá)定理即可求得中點(diǎn)M、N的坐標(biāo),利用點(diǎn)斜式方程求出直線MN的方程,化簡(jiǎn)后求出直線MN經(jīng)過(guò)的定點(diǎn)坐標(biāo).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在獨(dú)立性檢驗(yàn)中,統(tǒng)計(jì)量有三個(gè)臨界值:2.706,3.841和6.635.當(dāng)時(shí),有90%的把握說(shuō)明兩個(gè)事件有關(guān);當(dāng)時(shí),有95%的把握說(shuō)明兩個(gè)事件有關(guān),當(dāng)時(shí),有99%的把握說(shuō)明兩個(gè)事件有關(guān),當(dāng)時(shí),認(rèn)為兩個(gè)事件無(wú)關(guān).在一項(xiàng)打鼾與心臟病的調(diào)查中,共調(diào)查了2000人,經(jīng)計(jì)算.根據(jù)這一數(shù)據(jù)分析,認(rèn)為打鼾與患心臟病之間( )
A. 有95%的把握認(rèn)為兩者有關(guān) B. 約95%的打鼾者患心臟病
C. 有99%的把握認(rèn)為兩者有關(guān) D. 約99%的打鼾者患心臟病
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若,求在處的切線方程;
(2)若在區(qū)間上恰有兩個(gè)零點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=alnx+ , g(x)=x+lnx,其中a>0,且x∈(0,+∞).
(1)若a=1,求f(x)的最小值;
(2)若對(duì)任意x≥1,不等式f(x)≤g(x)恒成立,求實(shí)數(shù)a的取值范圍;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四棱柱ABCD-A1B1C1D1中,,平面BB1C1C底面ABCD,點(diǎn)、F分別是線段、BC的中點(diǎn).
(1)求證:AF//平面;
(2)求證:平面BB1C1C⊥平面.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題:①在線性回歸模型中,相關(guān)指數(shù)表示解釋變量對(duì)于預(yù)報(bào)變量的貢獻(xiàn)率, 越接近于1,表示回歸效果越好;②兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1;③在回歸直線方程中,當(dāng)解釋變量每增加一個(gè)單位時(shí),預(yù)報(bào)變量平均減少0.5個(gè)單位;④對(duì)分類變量與,它們的隨機(jī)變量的觀測(cè)值來(lái)說(shuō), 越小,“與有關(guān)系”的把握程度越大.其中正確命題的個(gè)數(shù)是( )
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2018年10月19日,由中國(guó)工信部、江西省政府聯(lián)合主辦的世界VR(虛擬現(xiàn)實(shí))產(chǎn)業(yè)大會(huì)在南昌開幕,南昌在紅谷灘新區(qū)建立VR特色小鎮(zhèn)項(xiàng)目.現(xiàn)某廠商抓住商機(jī)在去年用450萬(wàn)元購(gòu)進(jìn)一批VR設(shè)備,經(jīng)調(diào)試后今年投入使用,計(jì)劃第一年維修、保養(yǎng)費(fèi)用22萬(wàn)元,從第二年開始,每年所需維修、保養(yǎng)費(fèi)用比上一年增加4萬(wàn)元,該設(shè)備使用后,每年的總收入為180萬(wàn)元,設(shè)使用x年后設(shè)備的盈利額為y萬(wàn)元.
(1)寫出y與x之間的函數(shù)關(guān)系式;
(2)使用若干年后,當(dāng)年平均盈利額達(dá)到最大值時(shí),求該廠商的盈利額.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】a,b為空間中兩條互相垂直的直線,等腰直角三角形ABC的直角邊AC所在直線與a,b都垂直,斜邊AB以直線AC為旋轉(zhuǎn)軸旋轉(zhuǎn),有下列結(jié)論:
①當(dāng)直線AB與a成60°角時(shí),AB與b成30°角;
②當(dāng)直線AB與a成60°角時(shí),AB與b成60°角;
③直線AB與a所成角的最小值為45°;
④直線AB與a所成角的最大值為60°.
其中正確的是________.(填寫所有正確結(jié)論的編號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列滿足4Sn=(an+1)2 .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= , 求數(shù)列{bn}的前n項(xiàng)和Tn .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com