直線y=kx+3與圓(x-3)2+(y-2)2=4相交于M,N兩點(diǎn),若MN<2
3
,則k的取值范圍是
 
考點(diǎn):直線與圓相交的性質(zhì)
專題:直線與圓
分析:設(shè)圓心到直線y=kx+3的距離為d,求得d=
|3k-2+3|
k2+1
,利用勾股定理,結(jié)合|MN|≤2
3
,即可求出k的取值范圍.
解答: 解:設(shè)圓心(3,2)到直線y=kx+3的距離為d,則d=
|3k-2+3|
k2+1

由于(
MN
2
)
2
=4-d2,且MN<2
3
,求得 d≥1,即
|3k-2+3|
k2+1
≥1,
求得k≤-
3
4
,k≥0,即k的取值范圍是{k|k≤-
3
4
,k≥0},
故答案為:{k|k≤-
3
4
,k≥0}.
點(diǎn)評(píng):本題主要考查圓的標(biāo)準(zhǔn)方程,直線和圓相交的性質(zhì),點(diǎn)到直線的距離公式,弦長(zhǎng)公式的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=a(2cos2x+sin2x)+b(a>0)
(1)求f(x)的最小正周期T;
(2)若x∈[0,
π
4
]時(shí),f(x)的值域是[1,
2
],求實(shí)數(shù)a、b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ln(3x-2)的定義域是(  )
A、[1,+∞)
B、(
2
3
,+∞)
C、[
2
3
,1]
D、(
2
3
,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)A={ x||x-2|≤3},B={ x|x<t},若A∩B=φ,則實(shí)數(shù)t的取值范圍是( 。
A、t<-1B、t>5
C、t≤-1D、t≥5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過拋物線y2=4x焦點(diǎn)F的直線與拋物線交于A,B兩點(diǎn),如果
AF
=2
FB
,則直線AB的方程是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)是定義在[-1,1]上的奇函數(shù),且當(dāng)-1≤x<0時(shí).f(x)=-2x3-5ax2-4a2x-b.
(1)當(dāng)a=b=1時(shí),求函數(shù)f(x)的解析式;
(2)當(dāng)1<a≤3時(shí),求函數(shù)f(x)在[-1,0)上最大值g(a);
(3)如果對(duì)滿足1<a≤3的一切實(shí)數(shù)a,不等式f(x)≤0在[-1,0)上恒成立,求b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知P(x,y)滿足約束條件
x+y-3≤0
x-y-1≤0
x-1≥0
,O為坐標(biāo)原點(diǎn),A(3,4),則|
OP
|•cos∠AOP的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){x}表示離x最近的整數(shù),即若m-
1
2
<x≤m+
1
2
(m∈Z),則{x}=m.給出下列關(guān)于函數(shù)f(x)=|x-{x}|的四個(gè)命題:
①函數(shù)y=f(x)的定義域是R,值域是[0,
1
2
];
②函數(shù)y=f(x)的圖象關(guān)于直線x=
k
2
(k∈Z)對(duì)稱;
③函數(shù)y=f(x)是周期函數(shù),最小正周期是1;
④函數(shù)y=f(x)在[2,
5
2
]
上是增函數(shù).
其中真命題的個(gè)數(shù)是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知p:M∈{(x,y)||x|+|x-2|+
y2+2y+2
≤3};q:M∈{(x,y)|(x-1)2+y2<r2}(r>0).如果p是q的充分但不必要條件,則r的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案