【題目】若對于函數(shù)fx)=lnx+1+x2圖象上任意一點處的切線l1,在函數(shù)gxasincosx圖象上總存在一條切線l2,使得l1l2,則實數(shù)a的取值范圍為( 。

A. B.

C. D.

【答案】A

【解析】

求得fx)的導數(shù),可得切線l1的斜率k1,求得gx)的導數(shù),可得切線l2的斜率k2,運用兩直線垂直的條件:斜率之積為﹣1,結合正弦函數(shù)的值域和條件可得,x1x2使得等式成立,即(0[1|a|,﹣1|a|],解得a的范圍即可.

解:函數(shù)fx)=1nx+1+x2,

f′(x2x,( 其中x>﹣1),

函數(shù)gxasincosxasinxx,

g′(xacosx1;

要使過曲線fx)上任意一點的切線為l1,

總存在過曲線gx)=上一點處的切線l2,使得l1l2,

則[2x1)(acosx21)=﹣1

acosx21,

2x12x1+1)﹣222

x1x2使得等式成立,

∴(,0[1|a|,﹣1|a|]

解得|a|,

a的取值范圍為aa

故選:A

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知為坐標原點,橢圓的左、右焦點分別為,.過焦點且垂直于軸的直線與橢圓相交所得的弦長為3,直線與橢圓相切.

(1)求橢圓的標準方程;

(2)是否存在直線與橢圓相交于兩點,使得?若存在,求的取值范圍;若不存在,請說明理由!

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】電視傳媒公司為了了解某地區(qū)電視觀眾對某類體育節(jié)目的收視情況,隨機抽取了名觀眾進行調查,其中女性有.下面是根據(jù)調查結果繪制的觀眾日均收看該體育節(jié)目時間的頻率分布直方圖:

將日均收看該體育節(jié)目時間不低于分鐘的觀眾稱“體育述”,已知“體育迷”中名女性.

(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料你是否認為“體育迷”與性別有關?

非體育迷

體育迷

合計

合計

(2)將日均收看該體育項目不低于分鐘的觀眾稱為“超級體育迷”,已知“超級體育述”中有名女性,若從“超級體育述”中任意選取,求至少有名女性觀眾的概率.

附: ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家庭記錄了未使用節(jié)水龍頭天的日用水量數(shù)據(jù)(單位:)和使用了節(jié)水龍頭天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:

未使用節(jié)水龍頭天的日用水量頻數(shù)分布表

日用水量

頻數(shù)

使用了節(jié)水龍頭天的日用水量頻數(shù)分布表

日用水量

頻數(shù)

(Ⅰ)作出使用了節(jié)水龍頭天的日用水量數(shù)據(jù)的頻率分布直方圖;

(Ⅱ)估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按天計算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校在年的自主招生考試成績中隨機抽取名學生的筆試成績,按成績分組:第,第,第,第,第得到的頻率分布直方圖如圖所示

分別求第組的頻率;

若該校決定在第組中用分層抽樣的方法抽取名學生進入第二輪面試,

已知學生甲和學生乙的成績均在第組,求學生甲和學生乙同時進入第二輪面試的概率;

根據(jù)直方圖試估計這名學生成績的平均分.(同一組中的數(shù)據(jù)用改組區(qū)間的中間值代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某家庭記錄了未使用節(jié)水龍頭天的日用水量數(shù)據(jù)(單位:)和使用了節(jié)水龍頭天的日用水量數(shù)據(jù),得到頻數(shù)分布表如下:

未使用節(jié)水龍頭天的日用水量頻數(shù)分布表

日用水量

頻數(shù)

使用了節(jié)水龍頭天的日用水量頻數(shù)分布表

日用水量

頻數(shù)

(Ⅰ)作出使用了節(jié)水龍頭天的日用水量數(shù)據(jù)的頻率分布直方圖;

(Ⅱ)估計該家庭使用節(jié)水龍頭后,一年能節(jié)省多少水?(一年按天計算,同一組中的數(shù)據(jù)以這組數(shù)據(jù)所在區(qū)間中點的值作代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示的幾何體是由棱臺 和棱錐拼接而成的組合體,其底面四邊形是邊長為 的菱形,且 , 平面

1)求證:平面 平面 ;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知方程恰有四個不同的實數(shù)根,當函數(shù)時,實數(shù)的取值范圍是

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在中, ,沿翻折到的位置,使平面平面.

(1)求證: 平面;

(2)若在線段上有一點滿足,且二面角的大小為,求的值.

查看答案和解析>>

同步練習冊答案