8.等差數(shù)列{an}中,|a3|=|a9|,公差d<0,則使前n項和Sn取得最大值的正整數(shù)n的值是5或6,使前n項和Sn>0的正整數(shù)n的最大值是10.

分析 由題意,公差d<0,等差數(shù)列{an}是遞減數(shù)列,|a3|=|a9|,即a3=-a9,可得a3+a9=0,即可前n項和Sn取得最大值的正整數(shù)n的值和前n項和Sn>0的正整數(shù)n的值.

解答 解:由題意,公差d<0,等差數(shù)列{an}是遞減數(shù)列,|a3|=|a9|,即a3=-a9,可得a3+a9=0,
∵a3+a9=2a6,
∴a6=0,
∴等差數(shù)列{an}的前5項是正項,第6項為0.
則前n項和Sn取得最大值的正整數(shù)n的值為:5或6.
又∵${S}_{11}=\frac{({a}_{1}+{a}_{11})11}{2}=\frac{11({a}_{3}+{a}_{9})}{2}$=0,
∴使前n項和Sn>0的正整數(shù)n的最大值是:10.

點評 本題考查了等差數(shù)列的性質(zhì),考查了等差數(shù)列的前n項和的應(yīng)用,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.定義在R上的奇函數(shù)f(x)滿足f(2-x)=f(x),當(dāng)x∈[0,1]時,f(x)=$\sqrt{x}$.又函數(shù)g(x)=cos$\frac{πx}{2}$,x∈[-3,3],則函數(shù)F(x)=f(x)-g(x)的所有零點之和等于( 。
A.-$\frac{3}{2}$B.-$\frac{1}{2}$C.$\frac{1}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若直線2ax-by+2=0(a,b∈R)始終平分圓x2+y2+2x-4y+1=0的周長,則ab的最大值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若命題“對任意$x∈[{-\frac{π}{3},\frac{π}{4}}]$,tanx<m恒成立”是假命題,則實數(shù)m的取值范圍是m≤1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x+1,}&{x<1}\\{{2}^{x}-2,}&{x≥1}\end{array}\right.$,g(x)=$\frac{1}{x}$,若對任意x∈[m,+∞)(m>0),總存在兩個x0∈[0,2],使得f(x0)=g(x),則實數(shù)m的取值范圍是( 。
A.[1,+∞)B.(0,1]C.[$\frac{1}{2}$,+∞)D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點為F1,F(xiàn)2,若點P在橢圓上,且滿足|PO|2=|PF1|•|PF2|(其中O為坐標(biāo)原點),則稱點P為“*”點,則橢圓上的“*”點有4個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.設(shè)復(fù)數(shù)z滿足zi=1-2i,則z的虛部等于( 。
A.-2iB.-iC.-1D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知直線l1:2x-3y+1=0,直線l2過點(1,-1)且與直線l1平行.
(1)求直線l2的方程;
(2)求直線l2與兩坐標(biāo)軸圍成的三角形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(x)=f(x+4),且當(dāng)x∈[-2,0]時,$f(x)={(\frac{1}{2})^x}-1$,若在區(qū)間(-2,6]內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0(a>1)恰有三個不同的實數(shù)根,則a的取值范圍為(  )
A.(1,2)B.(2,+∞)C.(1,$\root{3}{4}$)D.($\root{3}{4}$,2)

查看答案和解析>>

同步練習(xí)冊答案