【題目】已知橢圓的左、右焦點分別為、,且兩焦點的距離為,橢圓上一點與兩焦點構(gòu)成的三角形的周長為.
(1)求橢圓的方程;
(2)過點的直線交橢圓于、兩點,若,求直線的方程.
【答案】(1);(2)或.
【解析】
(1)設橢圓的標準方程為,焦距為,根據(jù)題意可得、,可計算出的值,進而可得出橢圓的標準方程;
(2)由題意可知,直線不能與軸垂直,設直線的方程為,設點、,將直線的方程與橢圓的方程聯(lián)立,列出韋達定理,由,得出,利用平面向量數(shù)量積的坐標運算結(jié)合韋達定理求出實數(shù)的值,即可得出直線的方程.
(1)設橢圓的標準方程為,焦距為,
由題意可得,解得,,
因此,橢圓的標準方程為;
(2)由題意可知,直線不能與軸垂直,
設直線的方程為,設點、,
將直線的方程與橢圓的標準方程聯(lián)立,
消去并整理得,
由,解得或.
由韋達定理得,,
,則,且,同理,
,解得,滿足.
綜上所述,直線的方程為或.
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的空間幾何體中,平面平面與都是邊長為2的等邊三角形,與平面所成的角為60°,且點在平面上的射影落在的平分線上.
(1)求證:平面;
(2)求四面體的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓與圓相切,且與圓相內(nèi)切,記圓心的軌跡為曲線.
(Ⅰ)求曲線C的方程;
(Ⅱ)設Q為曲線C上的一個不在軸上的動點,O為坐標原點,過點作OQ的平行線交曲線C于M,N兩個不同的點, 求△QMN面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《流浪地球》是由劉慈欣的科幻小說改編的電影,在2019年春節(jié)檔上影,該片上影標志著中國電影科幻元年的到來;為了振救地球,延續(xù)百代子孫生存的希望,無數(shù)的人前仆后繼,奮不顧身的精神激蕩人心,催人奮進.某網(wǎng)絡調(diào)查機構(gòu)調(diào)查了大量觀眾的評分,得到如下統(tǒng)計表:
(1)求觀眾評分的平均數(shù)?
(2)視頻率為概率,若在評分大于等于8分的觀眾中隨機地抽取1人,他的評分恰好是10分的概率是多少?
(3)視頻率為概率,在評分大于等于8分的觀眾中隨機地抽取4人,用表示評分為10分的人數(shù),求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】重慶一中將要舉行校園歌手大賽,現(xiàn)有3男3女參加,需要安排他們的出場順序.(結(jié)果用數(shù)字作答)
(1)如果3個女生都不相鄰,那么有多少種不同的出場順序?
(2)如果女生甲在女生乙的前面(可以不相鄰),那么有多少種不同的出場順序?
(3)如果3位男生都相鄰,且女生甲不在第一個出場,那么有多少種不同的出場順序?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,四邊形ABCD是菱形,,BD=2.
(1)若點E,F分別為線段PD,BC上的中點,求證:EF∥平面PAB;
(2)若平面PBD⊥平面ABCD,且PD⊥PB,PD=PB,求平面PAB與平面PBC所成的銳二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com