如圖,已知橢圓E:=1(a>b>0)的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的2倍,且過點(diǎn)C(2,1),點(diǎn)C關(guān)于原點(diǎn)O的對(duì)稱點(diǎn)為D.
(1)求橢圓E的方程;
(2)點(diǎn)P在橢圓E上,直線CP和DP的斜率都存在且不為0,試問直線CP和DP的斜率之積是否為定值?若是,求此定值;若不是,請(qǐng)說(shuō)明理由;
(3)平行于CD的直線l交橢圓E于M、N兩點(diǎn),求△CMN面積的最大值,并求此時(shí)直線l的方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2013屆度吉林省吉林市高二上學(xué)期期末理科數(shù)學(xué)試卷 題型:解答題
如圖,已知橢圓(a>b>0)的離心率,過頂點(diǎn)A、B的直線與原點(diǎn)的距離為.
(1)求橢圓的方程.
(2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆江蘇省淮安市高二上學(xué)期期末模擬考試(四)數(shù)學(xué) 題型:解答題
如圖,已知橢圓(a>b>0)的離心率,過點(diǎn)A(0,-b)和B(a,0)的直線與原點(diǎn)的距離為.
(1)求橢圓的方程.
(2)已知定點(diǎn)E(-1,0),若直線y=kx+2(k≠0)與橢圓交于C、D兩點(diǎn).
問:是否存在k的值,使以CD為直徑的圓過E點(diǎn)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年江蘇省高二上學(xué)期期末測(cè)試數(shù)學(xué)試卷 題型:解答題
(本小題滿分15分)如圖,已知橢圓:+=1(a>b>0)的長(zhǎng)軸AB長(zhǎng)為4,離心率e=,O為坐標(biāo)原點(diǎn),過B的直線l與x軸垂直.P是橢圓上異于A、B的任意一點(diǎn),PH⊥x軸,H為垂足,延長(zhǎng)HP到點(diǎn)Q使得HP=PQ,連結(jié)AQ延長(zhǎng)交直線于點(diǎn)M,N為的中點(diǎn).
(1)求橢圓的方程;
(2)證明:Q點(diǎn)在以為直徑的圓上;
(3)試判斷直線QN與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分15分)如圖,已知橢圓:+=1(a>b>0)的長(zhǎng)軸AB長(zhǎng)為4,離心率e=,O為坐標(biāo)原點(diǎn),過B的直線l與x軸垂直.P是橢圓上異于A、B的任意一點(diǎn),PH⊥x軸,H為垂足,延長(zhǎng)HP到點(diǎn)Q使得HP=PQ,連結(jié)AQ延長(zhǎng)交直線于點(diǎn)M,N為的中點(diǎn).
(1)求橢圓的方程;
(2)證明:Q點(diǎn)在以為直徑的圓上;
(3)試判斷直線QN與圓的位置關(guān)系.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com