如圖,四棱錐中,面,、分別為、的中點(diǎn),.
(1)證明:∥面;
(2)證明:
(1)見解析;(2)見解析.
解析試題分析:(1)利用三角形中位線定理,得出∥ .
(2)首先利用面,可得到.
利用等腰三角形等知識(shí)得到,從而面,得到.
本題證明過程,充分體現(xiàn)了轉(zhuǎn)化與化歸思想的應(yīng)用.
試題解析: (1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c3/2/rmtke1.png" style="vertical-align:middle;" />、分別為、的中點(diǎn),
所以∥ 2分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/46/d/p6wf9.png" style="vertical-align:middle;" />面,面
所以∥面 5分
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/b1/8/hl2bb.png" style="vertical-align:middle;" />面
所以 7分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/58/f/14uma3.png" style="vertical-align:middle;" />,所以
又因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/c3/2/rmtke1.png" style="vertical-align:middle;" />為的中點(diǎn)
所以
所以
得,即 10分
因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/86/2/1g2vp3.png" style="vertical-align:middle;" />,所以面
所以 12分
考點(diǎn):直線與直線、直線與平面垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB、CD均為圓O的直徑,CE⊥圓O所在的平面,BF∥CE.求證:
(1)平面BCEF⊥平面ACE;
(2)直線DF∥平面ACE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,點(diǎn)C是以AB為直徑的圓上的一點(diǎn),直角梯形BCDE所在平面與圓O所在平面垂直,且DE∥BC,DC⊥BC,DE=BC.
(1)證明:EO∥平面ACD;
(2)證明:平面ACD⊥平面BCDE.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在正方體ABCD-A1B1C1D1中,E,F,G,M,N分別是B1C1,A1D1,A1B1,BD,B1C的中點(diǎn),
求證:(1)MN∥平面CDD1C1.
(2)平面EBD∥平面FGA.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖1,在直角梯形ABCD中,AD∥BC,∠ADC=90°,BA=BC.把△BAC沿AC折起到△PAC的位置,使得點(diǎn)P在平面ADC上的正投影O恰好落在線段AC上,如圖2所示.點(diǎn)E、F分別為棱PC,CD的中點(diǎn).
(1)求證:平面OEF∥平面APD;
(2)求證:CD⊥平面POF;
(3)在棱PC上是否存在一點(diǎn)M,使得M到P,O,C,F四點(diǎn)距離相等?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,三棱柱ABC-A1B1C1的側(cè)棱AA1⊥平面ABC,△ABC為正三角形,側(cè)面AA1C1C是正方形, E是的中點(diǎn),F是棱CC1上的點(diǎn).
(1)當(dāng)時(shí),求正方形AA1C1C的邊長(zhǎng);
(2)當(dāng)A1F+FB最小時(shí),求證:AE⊥平面A1FB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在正三棱柱ABC—A1B1C1中,.
(1)求直線與平面所成角的正弦值;
(2)在線段上是否存在點(diǎn)?使得二面角的大小為60°,若存在,求出的長(zhǎng);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com