不等式log4(8x-2x)≤x的解集為
 
考點:指、對數(shù)不等式的解法
專題:不等式的解法及應用
分析:由指數(shù)和對數(shù)的性質(zhì)可得原不等式等價于0<8x-2x≤4x,即(2x2-1>0且(2x2-2x-1≤0,解關(guān)于2x的一元二次不等式組可得.
解答: 解:不等式log4(8x-2x)≤x可化為log4(8x-2x)≤log44x,
等價于0<8x-2x≤4x,即(2x2-1>0且(2x2-2x-1≤0,
解得1<2x
1+
5
2
,∴0<x<log2
1+
5
2

故答案為:{x|0<x<log2
1+
5
2
}
點評:本題考查指對不等式的解集,等價轉(zhuǎn)化是解決問題的關(guān)鍵,屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

若存在x0∈N+,n∈N+,使f(x0)+f(x0+1)+…+f(x0+n)=63成立,則稱(x0,n)為函數(shù)f(x)的一個“生成點”.已知函數(shù)f(x)=2x+1,x∈N的“生成點”坐標滿足二次函數(shù)g(x)=ax2+bx+c,則使函數(shù)y=g(x)與x軸無交點的a的取值范圍是( �。�
A、0<α<
2+
3
16
B、
2-
3
16
<α<
2+
3
16
C、α<
2+
3
8
D、0<α<
2-
3
16
或α>
2+
3
16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知當x∈[1,2)時,f(x)=|x-
5
3
|;當x∈[1,+∞)時,f(2x)=2f(x),則方程f(x)=log8x(1≤x≤12)的根的個數(shù)為(  )
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

動圓P過定點F(1,0)且與直線x=-1相切,圓心P的軌跡為曲線C.
(1)求曲線C的方程;
(2)過F作曲線C的兩條互相垂直的弦AB,CD,設AB,CD的中點分別為M、N,求證:直線MN必過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
,
b
滿足|
a
|=1,|
b
|=4且
a
b
=-2,則
a
b
的夾角為(  )
A、150°B、120°
C、60°D、30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題錯誤的是( �。�
A、命題“若p則q”與命題“若¬q,則¬p”互為逆否命題
B、命題“?x∈R,x2-x>0”的否定是“?x∈R,x2-x≤0”
C、?x>0且x≠1,都有x+
1
x
>2
D、“若am2<bm2,則a<b”的逆命題為真

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的紙簍,觀察其幾何結(jié)構(gòu),可以看出是由許多條直線圍成的旋轉(zhuǎn)體,該幾何體的正視圖為( �。�
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的圖象是連續(xù)不斷的一條曲線,且滿足 f(1)>0,f(5)<0,若 f(3)>0.則f(x)在下列區(qū)間內(nèi)必有零點的是(  )
A、(1,3)
B、(3,5)
C、(2,4)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,且滿足:b2+c2-a2=bc,設函數(shù)f(x)=sin2x•cosA-cos2x•sinA.
(Ⅰ)求A的值;
(Ⅱ)求函數(shù)f(x)在[
π
6
,
3
]上的取值范圍.

查看答案和解析>>

同步練習冊答案