【題目】已知定點(diǎn),定直線(xiàn),動(dòng)點(diǎn)到點(diǎn)的距離比點(diǎn)的距離小1.

(1)求動(dòng)點(diǎn)P的軌跡C的方程;

(2)過(guò)點(diǎn)的直線(xiàn)與(1)中軌跡C相交于兩個(gè)不同的點(diǎn)M、N,若,求直線(xiàn)的斜率的取值范圍.

【答案】1y2=4x.(2)﹣12<k<0.

【解析】

1)根據(jù)條件結(jié)合拋物線(xiàn)的定義即可求軌跡C的方程;

2)設(shè)直線(xiàn)方程聯(lián)立直線(xiàn)和拋物線(xiàn)方程轉(zhuǎn)化為一元二次方程,利用,即可求出斜率的范圍.

1)設(shè)Pxy),由題意可得,P在直線(xiàn)x+2=0右邊,所以P點(diǎn)到直線(xiàn)x=﹣1和到F(1,0)距離相等,所以P點(diǎn)的軌跡是頂點(diǎn)在原點(diǎn),F為焦點(diǎn),開(kāi)口向右的拋物線(xiàn),

F和頂點(diǎn)的距離1,2p=4,所以軌跡C的方程是y2=4x

(2)由題意知直線(xiàn)l的斜率存在設(shè)為k,所以直線(xiàn)l的方程ykx+2(k≠0),M),N)聯(lián)立得消去xky2﹣4y+8=0

,,且△=16﹣32k>0即k

)()=()()+y1y2

,∴﹣12<k<0,滿(mǎn)足k,

∴﹣12<k<0.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) .

(1)當(dāng)時(shí),求函數(shù)的曲線(xiàn)上點(diǎn)處的切線(xiàn)方程;

(2)當(dāng)時(shí),求的單調(diào)區(qū)間;

(3)若有兩個(gè)極值點(diǎn), ,其中,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】[2019·牡丹江一中]某校從參加高一年級(jí)期末考試的學(xué)生中抽取60名學(xué)生的成績(jī)(均為整數(shù)),其成績(jī)的頻率分布直方圖如圖所示,由此估計(jì)此次考試成績(jī)的中位數(shù),眾數(shù)和平均數(shù)分別是( )

A. 73.3,75,72 B. 73.3,80,73

C. 70,70,76 D. 70,75,75

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的焦距為2,過(guò)短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)的圓的面積為,過(guò)橢圓的右焦點(diǎn)作斜率為)的直線(xiàn)與橢圓相交于兩點(diǎn),線(xiàn)段的中點(diǎn)為

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)過(guò)點(diǎn)垂直于的直線(xiàn)與軸交于點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C過(guò)點(diǎn),與y軸相切,且圓心在直線(xiàn).

(1)求圓C的標(biāo)準(zhǔn)方程;

(2)若圓C半徑小于2,求經(jīng)過(guò)點(diǎn)且與圓C相切的直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線(xiàn)過(guò)橢圓的右焦點(diǎn),拋物線(xiàn)的焦點(diǎn)為橢圓的上頂點(diǎn),且交橢圓兩點(diǎn),點(diǎn)在直線(xiàn)上的射影依次為.

(1)求橢圓的方程;

(2)若直線(xiàn)軸于點(diǎn),且,當(dāng)變化時(shí),證明: 為定值;

(3)當(dāng)變化時(shí),直線(xiàn)是否相交于定點(diǎn)?若是,請(qǐng)求出定點(diǎn)的坐標(biāo),并給予證明;否則,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知是定義在R上的奇函數(shù),且當(dāng)時(shí),.

1)求函數(shù)的解析式;

2)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖, 平面, 平面, 是等邊三角形, ,

的中點(diǎn).

(1)求證: ;

(2)若直線(xiàn)與平面所成角的正切值為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,橢圓的離心率為, 軸被曲線(xiàn)截得的線(xiàn)段長(zhǎng)等于的長(zhǎng)半軸長(zhǎng)。

1)求, 的方程;

2)設(shè)軸的交點(diǎn)為M,過(guò)坐標(biāo)原點(diǎn)O的直線(xiàn)相交于點(diǎn)A,B,直線(xiàn)MA,MB分別與相交與D,E.

證明: ;

MAB,MDE的面積分別是.問(wèn):是否存在直線(xiàn),使得=?請(qǐng)說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案