1+2+4+ …+2n=________________.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
a(x-1)2+1
bx+c-b
(a,b,c∈N)的圖象按向量
e
=(-1,0)
平移后得到的圖象關(guān)于原點(diǎn)對(duì)稱,且f(2)=2,f(3)<3.
(1)求a,b,c的值;
(2)設(shè)0<|x|<1,0<|t|≤1.求證:|t+x|+|t-x|<|f(tx+1)|
(3)定義函數(shù)G(x)=f(x)-x+2.當(dāng)n為正整數(shù)時(shí),求證:G(4)×G(6)×G(8)×…×G(2n)>
2n+1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=1,a2=3,且an+2=(1+2|cos
2
|)an+|sin
2
|,n∈N*
,
(1)求a2k-1(k∈N*);
(2)數(shù)列{yn},{bn}滿足y=a2n-1,b1=y1,且當(dāng)n≥2時(shí)bn
=y
2
n
(
1
y
2
1
+
1
y
2
2
+…+
1
y
2
n-1
)
.證明當(dāng)n≥2時(shí),
bn+1
(n+1)
-
bn
n2
=
1
n2
;
(3)在(2)的條件下,試比較(1+
1
b1
)•(1+
1
b2
)•(1+
1
b3
)+…+(1+
1
bn
)
與4的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)命題
①定義在R上的函數(shù)f(x)滿足f(2)<f(3),則函數(shù)f(x)在R上不是單調(diào)減函數(shù).
②若A={1,4},B={1,-1,2,-2},f:x→x7的平方根.則f是A到B的映射.
③將函數(shù)f(x)=2-x的圖象向右平移兩個(gè)單位向下平移一個(gè)單位后,得到的圖象對(duì)應(yīng)的函數(shù)為g(x)=2-x-2-1
④關(guān)于x13的方程|2x-1|=a(a為常數(shù)),當(dāng)a>0時(shí)方程必有兩個(gè)不同的實(shí)數(shù)解.
其中正確的命題序號(hào)為
①②
①②
(以序號(hào)作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•安徽模擬)國(guó)家統(tǒng)計(jì)局為研究城市未婚青年的年收入與是否購(gòu)房之間的關(guān)系,隨機(jī)統(tǒng)計(jì)了某市20名未婚青年的年收入(萬(wàn)元)與購(gòu)房數(shù)(套)的數(shù)據(jù),如下表:
人名編號(hào) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
年收入(萬(wàn)元) 15 5 7 16 14 3 4 6 20 8 4 12 5 6 4 30 3 7 4 6
購(gòu)房數(shù)量(套) 1 0 0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1
(Ⅰ)若當(dāng)年收入12萬(wàn)元以上(含12萬(wàn)元)為高收入人群,年收入12萬(wàn)元以下為普通收入人群.根據(jù)上表完成下面2×2列聯(lián)表(單位:人):
高收入 普通收入 合計(jì)
已購(gòu)房
未購(gòu)房
合計(jì) 20
(Ⅱ)根據(jù)題 (Ⅰ)中表格的數(shù)據(jù)計(jì)算,有多大的把握認(rèn)為這個(gè)城市未婚青年購(gòu)房與收入高低之間有關(guān)系?
參考數(shù)據(jù):
①隨機(jī)變量K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d為樣本容量;
②獨(dú)立性檢驗(yàn)隨機(jī)變量K2的臨界值參考表:
P(K2≥k0 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k0 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下列表格,探究函數(shù)f(x)=x+
4
x
,x∈(0,+∞)
的性質(zhì),
x 0.5 1 1.5 1.7 1.9 2 2.1 2.2 2.3 3 4 5 7
y 8.5 5 4.17 4.05 4.005 4 4.005 4.02 4.04 4.3 5 5.8 7.57
(1)請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問(wèn)題.
函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間(0,2)上遞減;
函數(shù)f(x)=x+
4
x
(x>0)
在區(qū)間
(2,+∞)
(2,+∞)
上遞增.
當(dāng)x=
2
2
時(shí),y最小=
4
4

(2)證明:函數(shù)f(x)=x+
4
x
在區(qū)間(0,2)遞減.
(3)函數(shù)f(x)=x+
4
x
(x<0)
時(shí),有最值嗎?是最大值還是最小值?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

同步練習(xí)冊(cè)答案