【題目】已知向量

的單調(diào)遞減區(qū)間;

)若,求 的值;

)將函數(shù)的圖象向右平移個(gè)單位得到的圖象,若函數(shù)上有零點(diǎn),求實(shí)數(shù)的取值范圍.

【答案】(Ⅰ) ;(Ⅱ)1;(Ⅲ)

【解析】試題分析:1)首先根據(jù)數(shù)量積的坐標(biāo)運(yùn)算公式表示函數(shù)f(x),然后利用降冪公式和輔助角公式把函數(shù)化簡(jiǎn)為標(biāo)準(zhǔn)形式,借助正弦函數(shù)的單調(diào)性列不等式求出單減區(qū)間;(2)根據(jù),解出,代入中,求出三角函數(shù)值;(3)把函數(shù)圖象右移個(gè)單位相當(dāng)于把解析式中的x替換為,得出函數(shù)的解析式,根據(jù)的范圍求出的范圍,求出g(x)的范圍, 上有零點(diǎn),就是函數(shù)的圖象有交點(diǎn),寫(xiě)出k的范圍 .

試題解析:

;

,

所以的單調(diào)遞減區(qū)間是

由已知, ,則

將函數(shù)的圖像向右平移個(gè)單位得到的圖像,

因?yàn)?/span>,所以,

所以;

若函數(shù)上有零點(diǎn),則函數(shù) 的圖像與直線上有交點(diǎn),所以實(shí)數(shù)的取值范圍為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)是定義在R上且周期為2的函數(shù),在區(qū)間[﹣1,1]上,f(x)= 其中a,b∈R.若 = ,則a+3b的值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知.

(1)若是奇函數(shù),求的值,并判斷的單調(diào)性(不用證明);

(2)若函數(shù)在區(qū)間(0,1)上有兩個(gè)不同的零點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的幾何體中,平面平面,四邊形為平行四邊形, , , .

(1)求證: 平面;

(2)求到平面的距離;

(3)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】<中華人民共和國(guó)個(gè)人所得稅法>規(guī)定,公民全月工資、薪金所得不超過(guò)3500元的部分不必納稅,超過(guò)3500元的部分為全月應(yīng)納稅所得額,此項(xiàng)稅款按下表分段累計(jì)計(jì)算:

(1)若某人一月份應(yīng)繳納此項(xiàng)稅款為280元,那么他當(dāng)月的工資、薪金所得是多少?

(2)假設(shè)某人一個(gè)月的工資、薪金所得是元(0<10000),試將其當(dāng)月應(yīng)繳納此項(xiàng)稅款元表示成關(guān)于的函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某游樂(lè)園的摩天輪最高點(diǎn)距離地面108米,直徑長(zhǎng)是98米,均速旋轉(zhuǎn)一圈需要18分鐘.如果某人從摩天輪的最低點(diǎn)處登上摩天輪并開(kāi)始計(jì)時(shí),那么:

(1)當(dāng)此人第四次距離地面米時(shí)用了多少分鐘?

(2)當(dāng)此人距離地面不低于米時(shí)可以看到游樂(lè)園的全貌,求摩天輪旋轉(zhuǎn)一圈中有多少分鐘可以看到游樂(lè)園的全貌?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2﹣cosx,x∈[﹣ , ],則滿足f(x0)>f( )的x0的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)解不等式

(2)若函數(shù)在區(qū)間上存在零點(diǎn),求實(shí)數(shù)的取值范圍;

3)若函數(shù),其中為奇函數(shù), 為偶函數(shù),若不等式對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線經(jīng)過(guò)直線的交點(diǎn).

(1)點(diǎn)到直線的距離為3,求直線的方程;

(2)求點(diǎn)到直線的距離的最大值,并求距離最大時(shí)的直線的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案