A(-3,0),B(3,0),圓C以(5,0)為圓心,且C經(jīng)過點(diǎn)P,且滿足,
(1)求圓C的方程;
(2)如果過A的一條直線l與C交于M,N兩點(diǎn),且MN=6,求l的方程。
解:(1)可解得P坐標(biāo)為(9,0),r=4,
∴C 的方程為
(2)由弦長為6解得圓心(5,0)到l距離為
故直線斜率為,
故l的方程為。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的長軸長與短軸長之比為
3
5
,焦點(diǎn)坐標(biāo)分別為F1(-2,0),F(xiàn)2(2,0).
(1)求橢圓C的方程;
(2)已知A(-3,0),B(3,0),p(xp,yp)是橢圓C在第一象限部分上的一動點(diǎn),且∠APB是鈍角,求xp的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

動點(diǎn)P(x,y)到兩定點(diǎn)A(-3,0)和B(3,0)的距離的比等于2(即
|PA||PB|
=2
),求動點(diǎn)P的軌跡方程,并說明這軌跡是什么圖形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(3,0),B(0,3),C(cosα,sinα),O為原點(diǎn).
(1)若
AC
BC
,求sin2α的值;
(2)若丨
OC
+
OA
丨=
13
,α∈(0,π),求
OB
OC
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(3,0),B(0,3),C(cosα,sinα).
(1)若|
OA
+
OC
|=
13
,且α∈(0,π),求
OB
OC
夾角的大;
(2)若(
OA
+2
OB
)⊥
OC
,求cos2α.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知點(diǎn)A(
3
,0),B(0,1),圓C是以AB為直徑的圓,直線l:
x=tcosφ
y=-1+tsinφ
,(t為參數(shù)).
(1)以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系,求圓C的極坐標(biāo)方程;
(2)過原點(diǎn)O作直線l的垂線,垂足為H,若動點(diǎn)M0滿足2
OM
=3
OH
,當(dāng)φ變化時,求點(diǎn)M軌跡的參數(shù)方程,并指出它是什么曲線.

查看答案和解析>>

同步練習(xí)冊答案