【題目】已知A(1,0,0),B(0,1,0),C(0,0,2).
(1)若∥,∥,求點D的坐標;
(2)問是否存在實數α,β,使得=α+β成立?若存在,求出α,β的值;若不存在,說明理由.
【答案】(1);(2)見解析
【解析】
(1) 設D(x,y,z),由∥,∥,得到解方程組即得解.(2) 假設存在實數α,β,使得=α+β成立,則有(-1,0,2)=α(-1,1,0)+β(0,-1,2)=(-α,α-β,2β),所以解之即得解.
(1)設D(x,y,z),則=(-x,1-y,-z),=(-1,0,2),
=(-x,-y,2-z),=(-1,1,0).
因為∥,∥,
所以
解得
即D(-1,1,2).
(2)依題意=(-1,1,0),=(-1,0,2),=(0,-1,2).
假設存在實數α,β,使得=α+β成立,則有(-1,0,2)=α(-1,1,0)+β(0,-1,2)=(-α,α-β,2β).
所以故存在α=β=1,使得=α+β成立.
科目:高中數學 來源: 題型:
【題目】已知函數 , 其中a∈R.若對任意的非零實數x1 , 存在唯一的非零實數x2(x1≠x2),使得f(x1)=f(x2)成立,則k的取值范圍為( )
A.k≤0
B.k≥8
C.0≤k≤8
D.k≤0或k≥8
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F是拋物線y2=4x的焦點,點A,B在該拋物線上且位于x軸的兩側,OA⊥OB(其中O為坐標原點),則△AOB與△AOF面積之和的最小值是( 。
A.16
B.8
C.8
D.18
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sinx(sinx+cosx).
(1)求f(x)的最小正周期和最大值;
(2)在銳角三角形ABC中,角A,B,C的對邊分別為a,b,c,若f()=1,a=2 , 求三角形ABC面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電視傳媒公司為了了解某類體育節(jié)目的收視情況,隨機抽取了100名觀眾進行調查,如圖是根據調查結果繪制的觀眾日均收看該類體育節(jié)目時間的頻率分布直方圖,其中收看時間分組區(qū)間是:[0,10),[10,20),[20,30),[30,40),[40,50),[50,60].則圖中x的值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,有一塊邊長為1(百米)的正方形區(qū)域ABCD.在點A處有一個可轉動的探照燈,其照射角∠PAQ始終為45°(其中點P,Q分別在邊BC,CD上),設BP=t.
(I)用t表示出PQ的長度,并探求△CPQ的周長l是否為定值;
(Ⅱ)設探照燈照射在正方形ABCD內部區(qū)域的面積S(平方百米),求S的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某自行車手從O點出發(fā),沿折線O﹣A﹣B﹣O勻速騎行,其中點A位于點O南偏東45°且與點O相距20 千米.該車手于上午8點整到達點A,8點20分騎至點C,其中點C位于點O南偏東(45°﹣α)(其中sinα= ,0°<α<90°)且與點O相距5 千米(假設所有路面及觀測點都在同一水平面上).
(1)求該自行車手的騎行速度;
(2)若點O正西方向27.5千米處有個氣象觀測站E,假定以點E為中心的3.5千米范圍內有長時間的持續(xù)強降雨.試問:該自行車手會不會進入降雨區(qū),并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com