下列函數(shù)中,在區(qū)間[-1,0)上為減函數(shù)的是


  1. A.
    數(shù)學公式
  2. B.
    數(shù)學公式
  3. C.
    數(shù)學公式
  4. D.
    y=lg|x|
D
分析:根據(jù)基本初等函數(shù)的單調(diào)性的結(jié)論,對各項給出的函數(shù)在[-1,0)上的單調(diào)性加以驗證,則不難得到本題的答案.
解答:對于A,因為,所以冪函數(shù)在R上為增函數(shù),
所以在[-1,0)上為增函數(shù),得A不正確;
對于B,因為y=sin(x+)=cosx,在區(qū)間(-π,0)上是增函數(shù),
所以y=sin(x+)=在[-1,0)上為增函數(shù),得B不正確;
對于C,因為,得函數(shù)y=在R上是減函數(shù),
所以函數(shù)y=-在R上是增函數(shù),在[-1,0)上也為增函數(shù),得C不正確;
對于D,當x<0時,y=lg|x|=lg(-x),可得函數(shù)在(-∞,0)上是減函數(shù)
所以y=lg|x|在區(qū)間[-1,0)上為減函數(shù),得D項正確.
故選:D
點評:本題給出幾個函數(shù),叫我們找出在區(qū)間[-1,0)上為增函數(shù)的函數(shù),著重考查了基本初等函數(shù)的單調(diào)性與單調(diào)區(qū)間的求法等知識,屬于基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是( 。
A、y=tanx
B、y=
1
x
C、y=2-x
D、y=-x2-4x+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北京模擬)下列函數(shù)中,在區(qū)間(0,+∞)上是增函數(shù)的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,在區(qū)間(0,2)上為增函數(shù)的是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,在區(qū)間(1,+∞)上為增函數(shù)的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列函數(shù)中,在區(qū)間(0,+∞)上為減函數(shù)的是( 。
A、y=log
1
2
x
B、y=-
1
x
C、y=3x
D、y=1+x2

查看答案和解析>>

同步練習冊答案