精英家教網 > 高中數學 > 題目詳情

(1)求與雙曲線有共同的漸近線,且過點的雙曲線的方程。

(2)已知中心在原點,一焦點為F(0,)的橢圓被直線L:y=3x-2截得的弦的中點的橫坐標為,求此橢圓的方程。

 

【答案】

(1)設雙曲線方程為,-------------2分

把點代人雙曲線方程得:=-4-------------4分

所以所求雙曲線的方程是:。-----------6分

 

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知雙曲線與橢圓
x2
4
+y2=1
共焦點,它們的離心率之和為
3
3
2
;
(1)求橢圓與雙曲線的離心率e1、e2;
(2)求雙曲線的標準方程與漸近線方程;
(3)已知直線l:y=
1
2
x+m
與橢圓有兩個交點,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知雙曲線的中心在原點O,其中一條準線方程為x=
3
2
,且與橢圓
x2
25
+
y2
13
=1
有共同的焦點.
(1)求此雙曲線的標準方程;
(2)(普通中學學生做)設直線L:y=kx+3與雙曲線交于A、B兩點,試問:是否存在實數k,使得以弦AB為直徑的圓過點O?若存在,求出k的值,若不存在,請說明理由.
(重點中學學生做)設直線L:y=kx+3與雙曲線交于A、B兩點,C是直線L1:y=mx+6上任一點(A、B、C三點不共線)試問:是否存在實數k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年浙江省寧波市海曙區(qū)效實中學高二(上)期中數學試卷(文科)(解析版) 題型:解答題

求下列雙曲線的標準方程.
(1)與橢圓共焦點,且過點的雙曲線;
(2)與雙曲線有相同漸近線,且過點的雙曲線.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年浙江省寧波市海曙區(qū)效實中學高二(上)期中數學試卷(文科)(解析版) 題型:解答題

求下列雙曲線的標準方程.
(1)與橢圓共焦點,且過點的雙曲線;
(2)與雙曲線有相同漸近線,且過點的雙曲線.

查看答案和解析>>

科目:高中數學 來源:2005-2006學年浙江省溫州市高二(上)期末數學試卷(解析版) 題型:解答題

已知雙曲線的中心在原點O,其中一條準線方程為,且與橢圓有共同的焦點.
(1)求此雙曲線的標準方程;
(2)(普通中學學生做)設直線L:y=kx+3與雙曲線交于A、B兩點,試問:是否存在實數k,使得以弦AB為直徑的圓過點O?若存在,求出k的值,若不存在,請說明理由.
(重點中學學生做)設直線L:y=kx+3與雙曲線交于A、B兩點,C是直線L1:y=mx+6上任一點(A、B、C三點不共線)試問:是否存在實數k,使得△ABC是以AB為底邊的等腰三角形?若存在,求出k的值,若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案