【題目】已知函數(shù)
(1)當時,求的極值;
(2)若有兩個不同的極值點 ,求的取值范圍;
【答案】(1)極小值(2)
【解析】試題分析:(1)當時,代入求導得出結果(2)對求導,設,在對求導,討論、時的單調(diào)性,確定取得極限時的值,然后求,即可算出結果
解析:(1)當時,,,令,可得,故上單調(diào)遞增,同理可得在上單調(diào)遞減,
故在處有極小值;
(2)依題意可得,有兩個不同的實根.
設,則有兩個不同的實根,,
若,則,此時為增函數(shù),故至多有1個實根,不符合要求;
若,則當時,,當時,,
故此時在上單調(diào)遞增,在上單調(diào)遞減,的最大值為
,
又當時,,當時,,故要使有兩個實根,則,得. (或作圖象知要使有兩個實根,則)
設的兩根為 ,當時,,此時;
當時,,此時;當時,,此時.
故為的極小值點,為的極大值點, 符合要求.
綜上所述:的取值范圍為.(分離變量的方法也可以)
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,曲線的參數(shù)方程為(其中為參數(shù)),曲線.以原點為極點,軸的正半軸為極軸建立極坐標系.
(1)求曲線、的極坐標方程;
(2)射線與曲線、分別交于點(且均異于原點)當時,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如下圖,在平面直角坐標系xOy中,點A(0,3),直線l:y=2x-4.設圓C的半徑為1,圓心在l上.
(1)若圓心C也在直線y=x-1上,過點A作圓C的切線,求切線的方程;
(2)若圓C上存在點M,使MA=2MO,求圓心C的橫坐標a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是拋物線的焦點,關于軸的對稱點為,曲線上任意一點滿足;直線和直線的斜率之積為.
(1)求曲線的方程;
(2)過且斜率為正數(shù)的直線與拋物線交于兩點,其中點在軸上方,與曲線交于點,若的面積為的面積為,當時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】橢圓()的左、右焦點分別為,,過作垂直于軸的直線與橢圓在第一象限交于點,若,且.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知點關于軸的對稱點在拋物線上,是否存在直線與橢圓交于,使得的中點落在直線上,并且與拋物線相切,若直線存在,求出的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知角始邊與軸的非負半軸重合,與圓相交于點,終邊與圓相交于點,點在軸上的射影為, 的面積為,函數(shù)的圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)()在同一半周期內(nèi)的圖象過點, , ,其中為坐標原點, 為函數(shù)圖象的最高點, 為函數(shù)的圖象與軸的正半軸的交點, 為等腰直角三角形.
(1)求的值;
(2)將繞原點按逆時針方向旋轉角,得到,若點恰好落在曲線()上(如圖所示),試判斷點是否也落在曲線()上,并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-5 不等式選講
已知函數(shù)f(x)=|x-1|-2|x+1|的最大值為m.
(1)求m;
(2)若a,b,c∈(0,+∞),a2+2b2+c2=2m,求ab+bc的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com