【題目】數(shù)列{an}滿足a1+a2+a3+…an=2n﹣an(n∈N+).數(shù)列{bn}滿足bn= ,則{bn}中的最大項的值是 .
【答案】
【解析】解:由a1+a2+a3+…an=2n﹣an , 得Sn=2n﹣an , 取n=1,求得a1=1;
由Sn=2n﹣an , 得Sn﹣1=2(n﹣1)﹣an﹣1(n≥2),
兩式作差得an=2﹣an+an﹣1 , 即 (n≥2),
又a1﹣2=﹣1≠0,
∴數(shù)列{an﹣2}構(gòu)成以 為公比的等比數(shù)列,
則 ,
則bn= = ,
當n=1時, ,當n=2時,b2=0,當n=3時, ,
而當n≥3時, ,
∴{bn}中的最大項的值是 .
所以答案是: .
【考點精析】關(guān)于本題考查的數(shù)列的通項公式,需要了解如果數(shù)列an的第n項與n之間的關(guān)系可以用一個公式表示,那么這個公式就叫這個數(shù)列的通項公式才能得出正確答案.
科目:高中數(shù)學 來源: 題型:
【題目】在棱長為的正方體中,O是AC的中點,E是線段D1O上一點,且D1E=λEO.
(1)若λ=1,求異面直線DE與CD1所成角的余弦值;
(2)若平面CDE⊥平面CD1O,求λ的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖是一個路燈的平面設計示意圖,其中曲線段AOB可視為拋物線的一部分,坐標原點O為拋物線的頂點,拋物線的對稱軸為y軸,燈桿BC可視為線段,其所在直線與曲線AOB所在的拋物線相切于點B.已知AB=2分米,直線軸,點C到直線AB的距離為8分米.燈桿BC部分的造價為10元/分米;若頂點O到直線AB的距離為t分米,則曲線段AOB部分的造價為元. 設直線BC的傾斜角為,以上兩部分的總造價為S元.
(1)①求t關(guān)于的函數(shù)關(guān)系式;
②求S關(guān)于的函數(shù)關(guān)系式;
(2)求總造價S的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列滿足,,是數(shù)列的前項的和.
(1)求數(shù)列的通項公式;
(2)若,,成等差數(shù)列,,18,成等比數(shù)列,求正整數(shù)的值;
(3)是否存在,使得為數(shù)列中的項?若存在,求出所有滿足條件的的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,對角線AC,BD垂直相交于點O,且OA=OB=OD=4,OC=3. 將△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小為90°(如圖).已知Q為EO的中點,點P在線段AB上,且 .
(Ⅰ)證明:直線PQ∥平面ADE;
(Ⅱ)求直線BD與平面ADE所成角θ的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.?x,y∈R,若x+y≠0,則x≠1且y≠﹣1
B.a∈R,“ ”是“a>1”的必要不充分條件
C.命題“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0”
D.設隨機變量X~N(1,52),若P(X<0)=P(X>a﹣2),則實數(shù)a的值為2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,以x軸正半軸為始邊作銳角α,其終邊與單位圓交于點A.以OA為始邊作銳角β,其終邊與單位圓交于點B,AB= .
(1)求cosβ的值;
(2)若點A的橫坐標為 ,求點B的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com