當(dāng)a>0時(shí),解不等式logax2+logx(ax)2>0.
考點(diǎn):指、對(duì)數(shù)不等式的解法
專題:不等式的解法及應(yīng)用
分析:首先將不等式等價(jià)變形,利用換元的方法轉(zhuǎn)化為分式不等式,求出logax的范圍,然后討論求之.
解答: 解:logax2+logx(ax)2>0可知x>0且x≠1,不等式等價(jià)于2logax+2logxa+2logxx>0,即logax+logxa+1>0,
設(shè)logax=t,則logxa=
1
t

不等式為t+
1
t
+1>0,變形為
t2+t+1
t
>0
,
∵t2+t+1>0恒成立,所以此不等式的解集為t>0,即logax>0,
所以a>1時(shí)不等式的解集為[1,+∞);
0<a<1時(shí),不等式的解集為(0,1).
點(diǎn)評(píng):本題考查了對(duì)數(shù)不等式的解法以及討論的數(shù)學(xué)思想;關(guān)鍵要正確換元將不等式轉(zhuǎn)化為熟悉的不等式解答.體現(xiàn)了轉(zhuǎn)化的思想方法.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U={1,2,3,4,5},集合M={1,2,3},N={2,4,5},則∁UM∩∁UN=(  )
A、空集
B、{4}
C、{1,3}
D、{2,5 }

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}是等差數(shù)列.
(1)前四項(xiàng)和為21,末四項(xiàng)和為67,且前n項(xiàng)和為286,求n;
(2)若Sn=20,S2n=38,求S3n
(3)若項(xiàng)數(shù)為奇數(shù),且奇數(shù)項(xiàng)和為44,偶數(shù)項(xiàng)和為33,求數(shù)列中間項(xiàng)和項(xiàng)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷下列命題是否正確,正確的說(shuō)明理由,錯(cuò)誤的舉例說(shuō)明:
(1)平面α⊥平面β,平面β⊥平面γ⇒平面α⊥平面γ;
(2)平面α∥平面α1,平面β∥平面β1,平面α⊥平面β⇒平面α1⊥平面β1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x2+bx+c(b,c∈R),若對(duì)一切x∈R,有f(x+
1
x
)>0,且f(
2x2+3
x2+1
)的最大值為1,求b,c所滿足的條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

用誘導(dǎo)公式求下列三角函數(shù)值.
(1)cos(-
17π
4
);
(2)sin(-2160°52′);
(3)cos1615°8′.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在(0,+∞)上的函數(shù)f(x)是增函數(shù),如果f(x2-2ax)在x∈[2,4]上是增函數(shù),則實(shí)數(shù)a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果一個(gè)函數(shù)f(x)的圖象既關(guān)于y軸對(duì)稱,又關(guān)于原點(diǎn)對(duì)稱,那么稱這個(gè)函數(shù)f(x)為“友好函數(shù)”.在下列幾個(gè)函數(shù)中,
①函數(shù)f(x)=0;
②函數(shù)f(x)=x0
③函數(shù)f(x)的定義域?yàn)镽,且對(duì)任意x,y∈R,都有f(x+y)=f(x)•f(y)成立;
④函數(shù)f(x)的定義域?yàn)镽,且對(duì)任意x,y∈R,都有f(x•y)=f(x)+f(y)成立;
⑤函數(shù)f(x)的定義域?yàn)镽,且對(duì)任意x∈R,都有f(-|x|)=-f(x)成立;
其中屬于“友好函數(shù)”的是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的函數(shù)f(x)滿足2f(x)-f(-x)=x+1,則f(x)的解析式為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案