已知a、b為異面直線,點(diǎn)A、B在直線a上,點(diǎn)C、D在直線b上,且AC=AD,BC=BD,則直線a、b所成的角為( 。
A.90°B.60°C.45°D.30°
取CD的中點(diǎn)E,連結(jié)AE、BE
∵△ACD中,AC=AD,E為CD中點(diǎn),∴AE⊥CD
同理可得BE⊥CD
∵AE、BE是平面ABE內(nèi)的相交直線
∴CD⊥平面ABE
∵AB?平面ABE,∴CD⊥AB
由此可得AB、CD所成的角為直角,即為異面直線a、b所成的角
所以異面直線a、b所成的角等于90°
故選:A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知三棱柱ABC-A1B1C1的各條棱長(zhǎng)都相等,且CC1⊥底面ABC,則異面直線BC1與AC所成角的余弦值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正四棱柱ABCD-A1B1C1D1中,AA1=2AB,則異面直線A1B與AD1所成角的余弦值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知A、B、C是球O的球面上三點(diǎn),∠BAC=90°,AB=2,BC=4,球O的表面積為48π,則異面直線AB與OC所成角余弦值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在正三棱柱ABC-A1B1C1中,若AB=
2
BB1
,則AB1與C1B所成的角的大小______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正方體ABCD-A1B1C1D1的棱長(zhǎng)為a.
(1)求A1B與B1C所成的角
(2)求點(diǎn)D到B1C的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,A,B,C,D為空間四點(diǎn),△ABC是等腰三角形,且∠ACB=90°,△ADB是等邊三角形.則AB與CD所成角的大小為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在側(cè)棱垂直底面的四棱柱ABCD-A1B1C1D1中,ADBC,AD⊥AB,AB=
2
.AD=2,BC=4,AA1=2,E是DD1的中點(diǎn),F(xiàn)是平面B1C1E與直線AA1的交點(diǎn).
(1)證明:
(i)EFA1D1
(ii)BA1⊥平面B1C1EF;
(2)求BC1與平面B1C1EF所成的角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四邊形ABCD中,AB=AD=4,BC=CD=
7
,點(diǎn)E為線段AD上的一點(diǎn).現(xiàn)將△DCE沿線段EC翻折到PAC,使得平面PAC⊥平面ABCE,連接PA,PB.
(Ⅰ)證明:BD⊥平面PAC;
(Ⅱ)若∠BAD=60°,且點(diǎn)E為線段AD的中點(diǎn),求直線PE與平面ABCE所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案