設(shè)bc分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量表示方程實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì))

(Ⅰ)求方程有實(shí)根的概率;

(Ⅱ)求的分布列和數(shù)學(xué)期望;

(Ⅲ)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程有實(shí)根的概率。

(I)解法一:基本事件總數(shù)為,

若使方程有實(shí)根,則,即。

當(dāng)時(shí),;

當(dāng)時(shí),

當(dāng)時(shí),;

當(dāng)時(shí),;

當(dāng)時(shí),;

當(dāng)時(shí),,

目標(biāo)事件個(gè)數(shù)為

因此方程 有實(shí)根的概率為

解法二:由題意知:設(shè)基本事件空間為,記方程“沒有實(shí)根”為事件A,“有且僅有一個(gè)實(shí)根”為事件B,方程“有兩個(gè)相異實(shí)根”為事件C,則

所以的基本事件總數(shù)為36個(gè),A中的基本事件總數(shù)為17個(gè),B中的基本事件總數(shù)為2個(gè),C中的基本事件總數(shù)為17個(gè)

又因?yàn)锽、C是互斥事件,

故所求概率

(II)由題意知,,則

,

的分布列為

0

1

2

P

的數(shù)學(xué)期望

(III)記“先后兩次出現(xiàn)的點(diǎn)數(shù)中有5”為事件M,“方程 有實(shí)根” 為事件N,則,,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量ξ表示方程x2+bx+c=0實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì)).
(1)求方程x2+bx+c=0有實(shí)根的概率;
(2)(理)求ξ的分布列和數(shù)學(xué)期望
(文)求P(ξ=1)的值
(3)(理)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程x2+bx+c=0有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),用隨機(jī)變量ξ表示方程x2+bx+c=0實(shí)根的個(gè)數(shù)(重根按一個(gè)計(jì)).
(I)求方程x2+bx+c=0有實(shí)根的概率;
(II)求ξ的分布列和數(shù)學(xué)期望;
(III)求在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,方程x2+bx+c=0有實(shí)根的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù),則在先后兩次出現(xiàn)的點(diǎn)數(shù)中有5的條件下,b>c的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù).
(1)求b≤2且c≥3的概率;
(2)求函數(shù)f(x)=x2+2bx+c圖象與x軸無交點(diǎn)的概率;
(3)用隨機(jī)變量ξ表示函數(shù)f(x)=x2+2bx+c圖象與x軸交點(diǎn)的個(gè)數(shù),求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)b和c分別是先后拋擲一枚骰子得到的點(diǎn)數(shù).
(I)求b≤2,且c≥3的概率;
(II)求函數(shù)f(x)=x2+bx+c與x軸無交點(diǎn)的概率.

查看答案和解析>>

同步練習(xí)冊答案