【題目】我國(guó)古代數(shù)學(xué)典籍《九章算術(shù)》“盈不足”中有一道兩鼠穿墻問(wèn)題:“今有垣厚十尺,兩鼠對(duì)穿,初日各一尺,大鼠日自倍,小鼠日自半,問(wèn)幾何日相逢?”現(xiàn)用程序框圖描述,如圖所示,則輸出結(jié)果n=(
A.4
B.5
C.2
D.3

【答案】A
【解析】解:模擬執(zhí)行程序,可得

a=1,A=1,S=0,n=1

S=2

不滿足條件S≥10,執(zhí)行循環(huán)體,n=2,a= ,A=2,S=

不滿足條件S≥10,執(zhí)行循環(huán)體,n=3,a= ,A=4,S=

不滿足條件S≥10,執(zhí)行循環(huán)體,n=4,a= ,A=8,S=

滿足條件S≥10,退出循環(huán),輸出n的值為4.

故選:A.

模擬執(zhí)行程序,依次寫(xiě)出每次循環(huán)得到的a,A,S的值,當(dāng)S= 時(shí),滿足條件S≥10,退出循環(huán),輸出n的值為4,從而得解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)
(1)若曲線 處的切線經(jīng)過(guò)坐標(biāo)原點(diǎn),求 及該切線的方程;
(2)設(shè) ,若函數(shù) 的值域?yàn)? ,求實(shí)數(shù) 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知y=f(x)是偶函數(shù),而y=f(x+1)是奇函數(shù),且對(duì)任意0≤x≤1,都有f(x)≥0,f(x)是增函數(shù),則a=f(2010),b=f( ),c=﹣f( )的大小關(guān)系是(
A.b<c<a
B.c<b<a
C.a<c<b
D.a<b<c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(某保險(xiǎn)公司有一款保險(xiǎn)產(chǎn)品的歷史戶(hù)獲益率(獲益率=獲益÷保費(fèi)收入)的頻率分布直方圖如圖所示:

(Ⅰ)試估計(jì)平均收益率;
(Ⅱ)根據(jù)經(jīng)驗(yàn)若每份保單的保費(fèi)在 元的基礎(chǔ)上每增加 元,對(duì)應(yīng)的銷(xiāo)量 (萬(wàn)份)與 (元)有較強(qiáng)線性相關(guān)關(guān)系,從歷史銷(xiāo)售記錄中抽樣得到如下 的對(duì)應(yīng)數(shù)據(jù):

(元)

銷(xiāo)量 (萬(wàn)份)

(ⅰ)根據(jù)數(shù)據(jù)計(jì)算出銷(xiāo)量 (萬(wàn)份)與 (元)的回歸方程為 ;
(ⅱ)若把回歸方程 當(dāng)作 的線性關(guān)系,用(Ⅰ)中求出的平均獲益率估計(jì)此產(chǎn)品的獲益率,每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大獲益,并求出該最大獲益.
參考公示:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖的程序框圖,為使輸出S的值小于91,則輸入的正整數(shù)N的最小值為( )

A.5
B.4
C.3
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若實(shí)數(shù)x,y滿足不等式組 ,則z=2|x|+y的最大植為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的偶函數(shù),且f(0)=0,當(dāng)x>0時(shí),
f(x)= .
(1)求函數(shù)f(x)的解析式;
(2)解不等式f(x2-1)>-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù) 的定義域?yàn)? ,若函數(shù) 滿足下列兩個(gè)條件,則稱(chēng) 在定義域 上是閉函數(shù).① 上是單調(diào)函數(shù);②存在區(qū)間 ,使 上值域?yàn)? .如果函數(shù) 為閉函數(shù),則 的取值范圍是.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率.以?xún)蓚(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)為頂點(diǎn)的四邊形的周長(zhǎng)為8,面積為

(Ⅰ)求橢圓的方程;

(Ⅱ)若點(diǎn)為橢圓上一點(diǎn),直線的方程為,求證:直線與橢圓有且只有一個(gè)交點(diǎn).

查看答案和解析>>

同步練習(xí)冊(cè)答案