已知直線l:y=2x+1和圓C:x2+y2=4,
(1)試判斷直線和圓的位置關(guān)系.
(2)求過點P(-1,2)且圓C相切的直線的方程.
科目:高中數(shù)學 來源:武漢市2007屆高中畢業(yè)生四月調(diào)研測試題文理科數(shù)學試卷 題型:038
已知直線l:y=2x-與橢圓C:+y2=1(a>1)交于P、Q兩點,以PQ為直徑的圓過橢圓C的右頂點A.
(1)設(shè)PQ中點M(x0,y0),求證:x0<
(2)求橢圓C的方程.
查看答案和解析>>
科目:高中數(shù)學 來源:江蘇省常州市2006-2007學年度第一學期期末質(zhì)量調(diào)研高三數(shù)學試題 題型:013
已知直線l:y=2x+3,直線l2與l1關(guān)于直線y=-x對稱,則直線l2的斜率為
A.
B.
C.2
D.-2
查看答案和解析>>
科目:高中數(shù)學 來源:浙江省瑞安市十校2012屆高三上學期期中聯(lián)考數(shù)學理科試題 題型:044
如圖,已知直線l:y=2x+m(m<0)與拋物線C1:y=ax2(a>0)和圓C2:x2+(y+1)2=5都相切,F(xiàn)是C1的焦點.
(1)求m與a的值;
(2)設(shè)A是C1上的一動點,以A為切點作拋物線C1的切線l,直線l交y軸于點B,以FA,F(xiàn)B為鄰邊作平行四邊形FAMB,證明:點M在一條定直線上;
(3)在(2)的條件下,記點M所在的定直線為l2,直線l2與y軸交點為N,連接MF交拋物線C1于P,Q兩點,求△NPQ的面積S的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知直線l:y=2x-2,圓C:x2+y2+2x+4y+1=0,請判斷直線l與圓C的位置關(guān)系,若相交,則求直線l被圓C所截的線段長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com