設(shè)函數(shù)f(x)=
1
3
x-lnx(x>0),則y=f(x)(  )
分析:求f(x)的零點(diǎn)問(wèn)題,可以令g(x)=
1
3
x,h(x)=lnx(x>0),分別畫(huà)出g(x)和h(x)的圖象,看交點(diǎn)所在的區(qū)間,從而進(jìn)行判斷;
解答:解:∵函數(shù)f(x)=
1
3
x-lnx(x>0),
可以令g(x)=
1
3
x,h(x)=lnx(x>0),由圖象得,

可知:f(x)有兩個(gè)零點(diǎn)A,B,
A點(diǎn)在區(qū)間(1,e)內(nèi),B點(diǎn)在區(qū)間(3,e2)內(nèi),
故選D.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是根據(jù)根的存在性及根的個(gè)數(shù)的判斷,其中將方程的根轉(zhuǎn)化為函數(shù)的零點(diǎn),然后利用圖象法結(jié)合數(shù)形結(jié)合的思想,分析函數(shù)圖象交點(diǎn)與k的關(guān)系是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江西模擬)設(shè)函數(shù)f(x)=
(
1
3
)
x
-8(x<0)
x2+x-1(x≥0)
,若f(a)>1,則實(shí)數(shù)a的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)定義在實(shí)數(shù)集上,它的圖象關(guān)于直線x=1對(duì)稱(chēng),且當(dāng)x≥1時(shí),f(x)=3x-1,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)的定義域?yàn)镈,若對(duì)任意x1,x2∈D,當(dāng)x1<x2時(shí),都有f(x1)≤f(x2),則稱(chēng)函數(shù)f(x)在D上為非減函數(shù).設(shè)函數(shù)f(x)在[0,1]上為非減函數(shù),且滿足以下三個(gè)條件:①f(0)=0;②f(
x
3
)=
1
2
f(x)
;③f(1-x)=2-f(x).則f(
1
3
)+f(
1
8
)
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•成都一模)設(shè)函數(shù)f(x)=ax3+bx2+cx,記f(x)的導(dǎo)函數(shù)是f(x).
(I)當(dāng)a=-1,b=c=-1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(II)當(dāng)c=-a2(a>0)時(shí),若函數(shù)f(x)的兩個(gè)極值點(diǎn)x1、x2滿足|x1-x2|=2,求b的取值范圍;
(III)若a=-
1
3
令h(x)=|f(x)|,記h(x)在[-1,1]上的最大值為H,當(dāng)b≥0,c∈R時(shí),證明:H
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
1
3
 x3+bx2+cx(c<b<1)在x=1處取到一個(gè)極小值,且存在實(shí)數(shù)m,使f′(m)=-1,
①證明:-3<c≤-1;
②判斷f′(m-4)的正負(fù)并加以證明;
③若f(x)在x∈[m-4,1]上的最大值等于
-2c
3
,求f(x)在x∈[m-4,1]上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案