拋物線的準(zhǔn)線方程為,則實數(shù)(   )
A.4B.C.2D.
B

試題分析:根據(jù)題意,由于拋物線,g故可知焦點在y軸上,開口向上,因此準(zhǔn)線方程為y=-1,那么可知,故選B.
點評:解決的關(guān)鍵是確定焦點位置,以及準(zhǔn)線方程的表示,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(滿分13分)
(1)某三棱錐的側(cè)視圖和俯視圖如圖所示,求三棱錐的體積. 
 
(2)過直角坐標(biāo)平面中的拋物線的焦點作一條傾斜角為的直線與拋物線相交于A,B兩點. 用表示A,B之間的距離;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的長軸長為,一個焦點的坐標(biāo)為(1,0).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)直線l:y=kx與橢圓C交于A,B兩點,點P為橢圓的右頂點.
(。┤糁本l斜率k=1,求△ABP的面積;
(ⅱ)若直線AP,BP的斜率分別為,,求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

直角坐標(biāo)平面上,為原點,為動點,,. 過點軸于,過軸于點. 記點的軌跡為曲線,
、,過點作直線交曲線于兩個不同的點、(點之間).
(1)求曲線的方程;
(2)是否存在直線,使得,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)拋物線方程為,為直線上任意一點,過引拋物線的切線,切點分別為

(1)求證:三點的橫坐標(biāo)成等差數(shù)列;
(2)已知當(dāng)點的坐標(biāo)為時,.求此時拋物線的方程。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)橢圓和雙曲線的公共焦點為,是兩曲線的一個交點,則=     .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于A、B兩點,與y軸交于點C,連接BC、AC。

(1)求AB和OC的長;
(2)點E從點A出發(fā),沿x軸向點B運動(點E與點A、B不重合)。過點E作直線l平行BC,交AC于點D。設(shè)AE的長為m,△ADE的面積為s,求s關(guān)于m的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
(3)在(2)的條件下,連接CE,求△CDE面積的最大值;此時,求出以點E為圓心,與BC相切的圓的面積(結(jié)果保留)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為拋物線的焦點,點為拋物線內(nèi)一定點,點為拋物線上一動點,最小值為8.
(1)求該拋物線的方程;
(2)若直線與拋物線交于、兩點,求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,把橢圓的長軸分成等份,過每個分點作軸的垂線交橢圓的上半部分于七個點,是橢圓的一個焦點則________________

查看答案和解析>>

同步練習(xí)冊答案