【題目】已知函數(shù) 的部分圖象如圖所示,則函數(shù)圖象的一個(gè)對(duì)稱中心可能為( )
A. B. C. D.
【答案】D
【解析】
由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由特殊點(diǎn)的坐標(biāo)求出φ的值,可得g(x)的解析式,再利用正弦函數(shù)的圖象的對(duì)稱性,求得函數(shù)g(x)=Acos(φx+ω)圖象的一個(gè)對(duì)稱中心.
根據(jù)函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象,
可得A=2,2(6+2),∴ω.
再根據(jù)函數(shù)的圖象經(jīng)過(guò)點(diǎn)(6,0),結(jié)合圖象可得6+φ=0,∴φ,∴f(x)=2sin(x).
則函數(shù)g(x)=Acos(φx+ω)=2cos(x)=2cos(x)
x解x=,結(jié)合選項(xiàng)k=-1滿足題意,∴圖象的一個(gè)對(duì)稱中心可能(,0),
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,,為,軸上兩個(gè)動(dòng)點(diǎn),點(diǎn)在直線上,且滿足,.
(1)求點(diǎn)的軌跡方程;
(2)記點(diǎn)的軌跡為曲線,為曲線與正半軸的交點(diǎn),、為曲線上與不重合的兩點(diǎn),且直線與直線的斜率之積為,試探究面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為,準(zhǔn)線為.已知以為圓心,半徑為4的圓與交于、兩點(diǎn), 是該圓與拋物線的一個(gè)交點(diǎn), .
(1)求的值;
(2)已知點(diǎn)的縱坐標(biāo)為且在上, 、是上異于點(diǎn)的另兩點(diǎn),且滿足直線和直線的斜率之和為,試問(wèn)直線是否經(jīng)過(guò)一定點(diǎn),若是,求出定點(diǎn)的坐標(biāo),否則,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】半期考試后,班長(zhǎng)小王統(tǒng)計(jì)了50名同學(xué)的數(shù)學(xué)成績(jī),繪制頻率分布直方圖如圖所示.
根據(jù)頻率分布直方圖,估計(jì)這50名同學(xué)的數(shù)學(xué)平均成績(jī);
用分層抽樣的方法從成績(jī)低于115的同學(xué)中抽取6名,再在抽取的這6名同學(xué)中任選2名,求這兩名同學(xué)數(shù)學(xué)成績(jī)均在中的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某鄉(xiāng)鎮(zhèn)供電所為了調(diào)查農(nóng)村居民用電量情況,隨機(jī)抽取了500戶居民去年的用電量(單位:),將所得數(shù)據(jù)整理后,畫(huà)出頻率分布直方圖如下;其中直方圖從左到右前3個(gè)小矩形的面積之比為1:2:3.
(1)該鄉(xiāng)鎮(zhèn)月均用電量在37.5~39.5之內(nèi)的居民共有多少戶?
(2)若按分層抽樣的方法從中抽出100戶作進(jìn)一步分析,則用電量在37.5~39.5內(nèi)居民應(yīng)抽取多少戶?
(3)試根據(jù)直方圖估算該鄉(xiāng)鎮(zhèn)居民月均用電量的中位數(shù)約是多少?(精確到0.01)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)為圓外一點(diǎn),若圓上存在一點(diǎn),使得,則正數(shù)的取值范圍是____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線的距離為,到點(diǎn)的距離為,且.直線與橢圓交于不同兩點(diǎn)(都在軸上方),且.
(1)求橢圓的方程;
(2)當(dāng)為橢圓與軸正半軸的交點(diǎn)時(shí),求直線方程;
(3)對(duì)于動(dòng)直線,是否存在一個(gè)定點(diǎn),無(wú)論如何變化,直線總經(jīng)過(guò)此定點(diǎn)?若存在,求出該定點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一鐵塊高溫融化后制成一張厚度忽略不計(jì)、面積為100dm2的矩形薄鐵皮(如圖),并沿虛線l1,l2裁剪成A,B,C三個(gè)矩形(B,C全等),用來(lái)制成一個(gè)柱體.現(xiàn)有兩種方案:
方案①:以為母線,將A作為圓柱的側(cè)面展開(kāi)圖,并從B,C中各裁剪出一個(gè)圓形作為圓柱的兩個(gè)底面;
方案②:以為側(cè)棱,將A作為正四棱柱的側(cè)面展開(kāi)圖,并從B,C中各裁剪出一個(gè)正方形(各邊分別與或垂直)作為正四棱柱的兩個(gè)底面.
(1)設(shè)B,C都是正方形,且其內(nèi)切圓恰為按方案①制成的圓柱的底面,求底面半徑;
(2)設(shè)的長(zhǎng)為dm,則當(dāng)為多少時(shí),能使按方案②制成的正四棱柱的體積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,幾何體是圓柱的一部分,它是由矩形ABCD(及其內(nèi)部)以AB邊所在直線為旋轉(zhuǎn)軸旋轉(zhuǎn)120°得到的,G是的中點(diǎn).
(1)設(shè)P是上的一點(diǎn),且AP⊥BE,求∠CBP的大;
(2)當(dāng)AB=3,AD=2時(shí),求二面角E-AG-C的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com