化簡:(
1
tan
α
2
-tan
α
2
)•
1-cos2α
sin2α
考點:三角函數(shù)中的恒等變換應(yīng)用
專題:三角函數(shù)的求值
分析:根據(jù)式子的特點利用商的關(guān)系切化弦,再通分、利用二倍角的正弦、余弦公式進行化簡.
解答: 解:原式=(
cos
α
2
sin
α
2
-
sin
α
2
cos
α
2
)•(
1-cos2α
sin2α

=
cos2
α
2
-sin2
α
2
sin
α
2
•cos
α
2
2sin2α
2sinαcosα

=
2cosα
sinα
sinα
cosα
=2
點評:本題考查了二倍角的正弦、余弦公式,以及商的關(guān)系的應(yīng)用,基本原則:切化弦,熟練應(yīng)用三角函數(shù)的公式是關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)f(x)是定義在R上的偶函數(shù),當0≤x≤2時,y=x,當x>2時,y=f(x)的圖象是頂點為P(3,4),且過點A(2,2)的拋物線的一部分.
(1)求函數(shù)f(x)在(-∞,-2)上的解析式;
(2)在直角坐標系中畫出函數(shù)f(x)的草圖;
(3)寫出函數(shù)f(x)的值域;
(4)寫出函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線x-y+1=0與圓x2+y2-4x-2y+m=0交于A、B兩點
(1)求線段AB的垂直平分線的方程.
(2)若|AB|=2
2
,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(2,1),B(3,2),向量
AD
=(-3,3).
(1)若四邊形ABCD為平行四邊形,求它的兩條對角線所成的銳角的余弦值;
(2)設(shè)O為坐標原點,P是直線OB上的一點,當
PA
PD
取得最小值時,求△PAD的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

f(n)=1+
1
2
+…+
1
n
,當n≥2,n∈N*時n+f(1)+f(2)+…+f(n-1)=nf(n),請用數(shù)學歸納法給予證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求證:
1
2×3
+
1
4×5
+…+
1
(2n)(2n+1)
1
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,BA是圓O的直徑,C、E在圓0上,BC、BE的延長線交直線AD于點D、F,BA2=BC•BD.求證:
(Ⅰ)直線AD是圓O的切線;
(Ⅱ)∠D+∠CEF=180°.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知二階矩陣M=
a1
3d
有特征值λ=-1及對應(yīng)的一個特征向量
e1
=
1
-3

(Ⅰ)求矩陣M;
(Ⅱ)設(shè)曲線C在矩陣M的作用下得到的方程為x2+2y2=1,求曲線C的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的通項公式an=2n+1(n∈N*),其前n項和為Sn,則數(shù)列{
Sn
n
}的前10項的和為
 

查看答案和解析>>

同步練習冊答案