某超市在節(jié)日期間進行有獎促銷,凡在該超市購物滿200元的顧客,將獲得一次摸獎機會,規(guī)則如下:
獎盒中放有除顏色外完全相同的1個紅色球,1個黃色球,1個藍色球和1個黑色球.顧客不放回的每次摸出1個球,直至摸到黑色球停止摸獎.規(guī)定摸到紅色球獎勵10元,摸到黃色球或藍色球獎勵5元,摸到黑色球無獎勵.
(1)求一名顧客摸球3次停止摸獎的概率;
(2)記X為一名顧客摸獎獲得的獎金數(shù)額,求隨機變量X的分布列和數(shù)學期望.

(1)
(2)所以隨機變量的分布列為:
,
.

解析試題分析:(1)由題意知,事件“一名顧客摸球3次停止摸球”的基本事件為前兩次摸到的球可能為紅、黃、藍球中的兩種、第三次必是黑球,所以該事件個數(shù)為,而事件總數(shù)是從四個球中不放回地選三個的總數(shù)為,由古典概型的概率計算公式可求出所事件的概率;(2)由題意得,一名顧客摸球次數(shù)的可能性分別為1、2、3、4,由(1)的做法可得隨機變量的所有取值為0、5、10、15、20,并分別求出相應的概率,從而可得到隨機變量的分布列,并求出其數(shù)學期望.
(1)設(shè)“一名顧客摸球3次停止摸獎”為事件,則.故一名顧客摸球3次停止摸獎的概率為.    4分
(2)隨機變量的所有取值為0、5、10、15、20.    6分
,,,,.
所以隨機變量的分布列為:
   11分
    13分
考點:1.古典概型;2.隨機變量布列、數(shù)學期望.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

袋中共有10個大小相同的編號為1,2,3的球,其中1號球有1個,2號球有m個,3號球有n個.從袋中依次摸出2個球,已知在第一次摸出3號球的前提下,再摸出一個2號球的概率是
(1)求m,n的值;
(2)從袋中任意摸出2個球,設(shè)得到小球的編號數(shù)之和為ξ,求隨機變量ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

計劃在某水庫建一座至多安裝3臺發(fā)電機的水電站,過去50年的水文資料顯示,水庫年入流量(年入流量:一年內(nèi)上游來水與庫區(qū)降水之和.單位:億立方米)都在40以上.其中,不足80的年份有10年,不低于80且不超過120的年份有35年,超過120的年份有5年.將年入流量在以上三段的頻率作為相應段的概率,并假設(shè)各年的年入流量相互獨立.
(1)求未來4年中,至多1年的年入流量超過120的概率;
(2)水電站希望安裝的發(fā)電機盡可能運行,但每年發(fā)電機最多可運行臺數(shù)受年入流量限制,并有如下關(guān)系:

年入流量



發(fā)電量最多可運行臺數(shù)
1
2
3
 
若某臺發(fā)電機運行,則該臺年利潤為5000萬元;若某臺發(fā)電機未運行,則該臺年虧損800萬元,欲使水電站年總利潤的均值達到最大,應安裝發(fā)電機多少臺?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

每年的三月十二日,是中國的植樹節(jié),林管部門在植樹前,為保證樹苗的質(zhì)量,都會在植樹前對樹苗進行檢測.現(xiàn)從甲、乙兩種樹苗中各抽測了10株樹苗的高度,規(guī)定高于128厘米的樹苗為“良種樹苗”,測得高度如下(單位:厘米):
甲:137,121,131,120,129,119,132,123,125,133;
乙:110,130,147,127,146,114,126,110,144,146.
(1)根據(jù)抽測結(jié)果,畫出甲、乙兩種樹苗高度的莖葉圖,并根據(jù)你填寫的莖葉圖,對甲、乙兩種樹苗的高度作比較,寫出對兩種樹苗高度的統(tǒng)計結(jié)論;
(2)設(shè)抽測的10株甲種樹苗高度平均值為x,將這10株樹苗的高度依次輸入按程序框圖進行運算(如圖),問輸出的S大小為多少?并說明S的統(tǒng)計學意義;
(3)若小王在甲種樹苗中隨機領(lǐng)取了5株進行種植,用樣本的頻率分布估計總體分布,求小王領(lǐng)取到的“良種樹苗”的株數(shù)X的分布列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,從參加環(huán)保知識競賽的學生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:觀察圖形,回答下列問題:

(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計這次環(huán)保知識競賽成績的平均數(shù)、眾數(shù)、中位數(shù)。(不要求寫過程)
(3) 從成績是80分以上(包括80分)的學生中選兩人,求他們在同一分數(shù)段的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

名男生和名女生中任選人參加演講比賽,
①求所選人都是男生的概率;
②求所選人恰有名女生的概率;
③求所選人中至少有名女生的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

從某學校的名男生中隨機抽取名測量身高,被測學生身高全部介于cm和cm之間,將測量結(jié)果按如下方式分成八組:第一組[,),第二組[,),…,第八組[,],右圖是按上述分組方法得到的頻率分布直方圖的一部分,已知第一組與第八組人數(shù)相同,第六組的人數(shù)為人.
(1)求第七組的頻率并估計該校800名男生中身高在cm以上(含cm)的人數(shù);
(2)從第六組和第八組的男生中隨機抽取兩名男生,記他們的身高分別為,事件{},求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

為防止山體滑坡,某地決定建設(shè)既美化又防護的綠化帶,種植松樹、柳樹等植物.某人一次種植了n株柳樹,各株柳樹成活與否是相互獨立的,成活率為p,設(shè)ξ為成活柳樹的株數(shù),數(shù)學期望E(ξ)=3,標準差σ(ξ)為.
(1)求n、p的值并寫出ξ的分布列;
(2)若有3株或3株以上的柳樹未成活,則需要補種,求需要補種柳樹的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(2014·鄭州模擬)某學生對其30位親屬的飲食習慣進行了一次調(diào)查,并用莖葉圖表示30人的飲食指數(shù).說明:如圖中飲食指數(shù)低于70的人,飲食以蔬菜為主;飲食指數(shù)高于70的人,飲食以肉類為主.

(1)根據(jù)莖葉圖,幫助這位同學說明其親屬30人的飲食習慣.
(2)根據(jù)以上數(shù)據(jù)完成2×2列聯(lián)表:

 
主食蔬菜
主食肉類
總計
50歲以下
 
 
 
50歲以上
 
 
 
總計
 
 
 
(3)能否在犯錯誤的概率不超過0.01的前提下認為其親屬的飲食習慣與年齡有關(guān),并寫出簡要分析.

查看答案和解析>>

同步練習冊答案