【題目】在如圖所示的五面體中,四邊形是矩形,平面
平面
,且
,
,
,
,點(diǎn)
在
上.
求證:(1)平面
(2)平面
平面
【答案】詳見解析
【解析】
(1)先證明平面平面
,進(jìn)而由面面平行可得線面平行;
(2)利用勾股定理的逆定理證明直線,由面面垂直的性質(zhì)得到
平面
,進(jìn)而可得
平面
,從而可得平面
平面
.
證明:(1)連結(jié)DM
∵AB∥EF,AB=EF,M是EF的中點(diǎn),
∴AB∥EM且ABEM,四邊形ABEM是平行四邊形,
∴AM∥BE,又∵AM平面BCE,BE平面BCE,
∴AM∥平面BCE.∵四邊形ABCD是矩形,
∴AD∥BC,又BC平面BCE,AD平面BCE,∴AD∥平面BCE,
又AD平面ADM,AM平面ADM,AD∩AM=A,
∴平面ADM∥平面BCE,
又DN平面ADM,
∴DN∥平面BCE(2)由(1)知AM=BE=2,
∵AF=BE=2,MF=EF=
∴AM2+AF2=MF2,∴AM⊥AF.
∵平面ADF⊥平面ABEF,平面ADF∩平面ABEF=AF,AM平面ABEF,
∴AM⊥平面DAF,∵DA平面DAF,
∴AM⊥DA,
又∵四邊形ABCD是矩形,∴AD⊥AB,
∵AB平面ABEF,AM平面ABEF,AB∩AM=A,
∴AD⊥平面ABEF,又AD平面ABCD,
∴平面ABEF⊥平面ABCD
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知命題在區(qū)間
上是減函數(shù);
命題q:不等式無解。
若命題“”為真,命題“
”為假,求實(shí)數(shù)m 的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)滿足f(4)=f(﹣2)=1,f′(x)為f(x)的導(dǎo)函數(shù),且導(dǎo)函數(shù)y=f′(x)的圖象如圖所示.則不等式f(x)<1的解集是( )
A. (﹣2,0)
B. (﹣2,4)
C. (0,4)
D. (﹣∞,﹣2)∪(4,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】天氣預(yù)報(bào)說,在今后的三天中,每天下雨的概率都為.現(xiàn)采用隨機(jī)模擬試驗(yàn)的方法估計(jì)這三天中恰有兩天下雨的概率:用
表示下雨,從下列隨機(jī)數(shù)表的第
行第
列的
開始讀取,直到讀取了
組數(shù)據(jù),
18 18 07 92 45 44 17 16 58 09 79 83 86 19 62 06 76 50 03 10
55 23 64 05 05 26 62 38 97 75 34 16 07 44 99 83 11 46 32 24
據(jù)此估計(jì),這三天中恰有兩天下雨的概率近似為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),函數(shù)
.
⑴若的定義域?yàn)?/span>
,求實(shí)數(shù)
的取值范圍;
⑵當(dāng),求函數(shù)
的最小值
;
⑶是否存在實(shí)數(shù),使得函數(shù)
的定義域?yàn)?/span>
,值域?yàn)?/span>
?若存在,求出
的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義在上的偶函數(shù)
和奇函數(shù)
,且
.
(1)求函數(shù),
的解析式;
(2)設(shè)函數(shù),記
.探究是否存在正整數(shù)
,使得對(duì)任意的
,不等式
恒成立?若存在,求出所有滿足條件的正整數(shù)
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為
,且過點(diǎn)
.
為橢圓的右焦點(diǎn),
為橢圓上關(guān)于原點(diǎn)對(duì)稱的兩點(diǎn),連接
分別交橢圓于
兩點(diǎn).
⑴求橢圓的標(biāo)準(zhǔn)方程;
⑵若,求
的值;
⑶設(shè)直線,
的斜率分別為
,
,是否存在實(shí)數(shù)
,使得
,若存在,求出
的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】醫(yī)藥公司針對(duì)某種疾病開發(fā)了一種新型藥物,患者單次服用制定規(guī)格的該藥物后,其體內(nèi)的藥物濃度隨時(shí)間
的變化情況(如圖所示):當(dāng)
時(shí),
與
的函數(shù)關(guān)系式為
(
為常數(shù));當(dāng)
時(shí),
與
的函數(shù)關(guān)系式為
(
為常數(shù)).服藥
后,患者體內(nèi)的藥物濃度為
,這種藥物在患者體內(nèi)的藥物濃度不低于最低有效濃度,才有療效;而超過最低中毒濃度,患者就會(huì)有危險(xiǎn).
(1)首次服藥后,藥物有療效的時(shí)間是多長?
(2)首次服藥1小時(shí)后,可否立即再次服用同種規(guī)格的這種藥物?
(參考數(shù)據(jù):,
)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)判斷并證明函數(shù)在
上的單調(diào)性;
(2)當(dāng)時(shí),函數(shù)
的最大值與最小值之差為
,求
的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com