(2010•武昌區(qū)模擬)
lim
x→0
=
ex-1
x
=
1
1
分析:利用求函數(shù)的極限的羅比達(dá)法則,把函數(shù)的分子和分母分別求導(dǎo)數(shù)后,使用極限的運(yùn)算法則進(jìn)行運(yùn)算.
解答:解:
lim
x→0
=
ex-1
x
=
lim
x→0
(ex)′-1′
x′
=
lim
x→0
ex-0
1
=e0-0=1,
故答案為:1.
點(diǎn)評(píng):本題考查求函數(shù)的極限的羅比達(dá)法則的應(yīng)用,是一道基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•武昌區(qū)模擬)球面上有3個(gè)點(diǎn),其中任意兩點(diǎn)的球面距離都等于大圓周長(zhǎng)的
1
6
,經(jīng)過這3點(diǎn)的小圓周長(zhǎng)為4π,那么這個(gè)球的體積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•武昌區(qū)模擬)一個(gè)口袋中裝有4個(gè)紅球和5個(gè)白球,一次摸獎(jiǎng)從中摸兩個(gè)球,兩個(gè)球顏色不同則中獎(jiǎng).
(Ⅰ)試求一次摸獎(jiǎng)中獎(jiǎng)的概率P;
(Ⅱ)求三次摸獎(jiǎng)(每次摸獎(jiǎng)后放回)中獎(jiǎng)次數(shù)ξ的分布列與期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•武昌區(qū)模擬)設(shè)函數(shù)f(x)=px-
q
x
-2lnx
,且f(e)=qe-
p
e
-2
,其中p≥0,e是自然對(duì)數(shù)的底數(shù).
(1)求p與q的關(guān)系;
(2)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍.
(3)設(shè)g(x)=
2e
x
.若存在x0∈[1,e],使得f(x0)>g(x0)成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•武昌區(qū)模擬)2010年兩會(huì)記者招待會(huì)上,主持人要從5名中國記者與4名外主國記者中選出3名進(jìn)行提問,要求3人中既有國內(nèi)記者又有國外記者,且國內(nèi)記者不能連續(xù)提問,則不同的提問方式的種數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案