【題目】已知函數(shù)在區(qū)間上有最大值和最小值 .

(1)求的值;

(2)若不等式上有解,求實(shí)數(shù)的取值范圍.

【答案】(1);(2).

【解析】試題分析:(1,依題意知, ,由函數(shù)在區(qū)間上有最大值和最小值,即可求得的值;2設(shè) ,求出函數(shù)的最大值即可.

試題解析:(1)令t=2x[24], y=at2-2at+1-b,t[2,4],

對(duì)稱軸t=1a0

t=2時(shí),ymin=4a-4a+1-b=1, t=4時(shí),ymax=16a-8a+1-b=9, 解得a=1,b=0

24x-22x+1-k4x≥0x[-1,1]上有解

設(shè)2x=t

x[-1,1]

t[,2]

f2x-k.2x≥0x[-1,1]有解

t2-2t+1-kt2≥0t[2]有解

k=1-+

再令=m,則m[2]

km2-2m+1=m-12

hm=m2-2m+1

hmmax=h2=1

k≤1

故實(shí)數(shù)k的取值范圍(-∞,1]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】一只小船以的速度由南向北勻速駛過(guò)湖面,在離湖面高20米的橋上,一輛汽車(chē)由西向東以的速度前進(jìn)(如圖),現(xiàn)在小船在水平面上的點(diǎn)以南的40米處,汽車(chē)在橋上點(diǎn)以西的30米處(其中水平面),請(qǐng)畫(huà)出合適的空間圖形并求小船與汽車(chē)間的最短距離.(不考慮汽車(chē)與小船本身的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)數(shù)列{an}的前n項(xiàng)和為Sn , 且2Sn=(n+2)an﹣1(n∈N*).
(1)求a1的值;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)設(shè)Tn= ,求證:Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐P-ABCD中,AB//CD,且

(1)證明:平面PAB⊥平面PAD;

(2)若PA=PD=AB=DC, ,且四棱錐P-ABCD的體積為,求該四棱錐的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)是奇函數(shù), 是偶函數(shù).

1的值;

2說(shuō)明函數(shù)的單調(diào)性;若對(duì)任意的不等式恒成立,求實(shí)數(shù)的取值范圍;

3設(shè),若存在,使不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知命題p:x0∈R,x02﹣2x0+3≤0的否定是x∈R,x2﹣2x+3>0,命題q:雙曲線 ﹣y2=1的離心率為2,則下列命題中為真命題的是(
A.p∨q
B.¬p∧q
C.¬p∨q
D.p∧q

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱A1B1C1-ABC中,側(cè)棱AA1⊥底面ABC,底面三角形ABC是正三角形,E是BC中點(diǎn),則下列敘述正確的是( )

A. AC⊥平面ABB1A1 B. CC1與B1E是異面直線

C. A1C1∥B1E D. AE⊥BB1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓經(jīng)過(guò)點(diǎn), ,且圓心在直線.

(1)求圓的方程;

(2)過(guò)點(diǎn)的直線與圓交于兩點(diǎn),問(wèn)在直線上是否存在定點(diǎn),使得恒成立?若存在,請(qǐng)求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,則下列說(shuō)法正確的(
A.a∈(2,4),輸出的i的值為5
B.a∈(4,5),輸出的i的值為5
C.a∈(3,4),輸出的i的值為5
D.a∈(2,4),輸出的i的值為5

查看答案和解析>>

同步練習(xí)冊(cè)答案