(2011•綿陽一模)若定義在R上的函數(shù)y=f(x)滿足f(x+1)=-f(x),且當x∈[-1,1]時,f(x)=x2,函數(shù)g(x)=
log3(x-1)  (x>1)
2x(x≤1)
則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點的個數(shù)為(  )
分析:令h(x)=f(x)-g(x)=0,即f(x)=g(x),考察出y=f(x),y=g(x)在區(qū)間[-5,5]上的交點的個數(shù)即可.
解答:解:定義在R上的函數(shù)y=f(x)滿足f(x+1)=-f(x),則f(x+2)=f[(x+1)+1]=-f(x+1)=-[-f(x)]=f(x),
所以函數(shù)y=f(x)是以2周期的函數(shù).
在同一坐標系內(nèi)畫出y=f(x),y=g(x)在區(qū)間[-5,5]上的圖象,

共有8個交點,所以函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]內(nèi)的零點的個數(shù)為8個
故選C.
點評:本題考查函數(shù)零點的意義及個數(shù)求解.函數(shù)與方程的思想.利用函數(shù)的圖象可以加強直觀性,本題先由已知條件轉化為判斷兩函數(shù)圖象交點個數(shù),再利用函數(shù)圖象解決.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•綿陽一模)已知等差數(shù)列{an}前三項和為11,后三項和為69,所有項的和為120,則a5=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•綿陽一模)等比數(shù)列{an}的各項均為正數(shù),且a1+6a2=1,a22=9a1•a5,.
(I )求數(shù)列{an}的通項公式;
(Ⅱ)設a1•a2•a3…an=3
1bn
,求數(shù)列{bn}的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•綿陽一模)給出以下四個命題:
①若x2≠y2,則x≠y或x≠-y;
②若2≤x<3,則(x-2)(x-3)≤0;
③若a,b全為零,則|a|+|b|=0;
④x,y∈N,若x+y是奇數(shù),則x,y中一個是奇數(shù),一個是偶數(shù).
那么下列說法錯誤的是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•綿陽一模)若集合I={x∈N|0<x≤6},P={x|x是6的約數(shù)},Q={1,3,4,5},則(CIP)∩Q=(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•綿陽一模)函數(shù)y=
log
1
2
(3x-1)
的定義域為( 。

查看答案和解析>>

同步練習冊答案