已知,,是否存在實數(shù),使同時滿足下列兩個條件:(1)上是減函數(shù),在上是增函數(shù);(2)的最小值是,若存在,求出,若不存在,說明理由.

試題分析:設
上是減函數(shù),在上是增函數(shù)
上是減函數(shù),在上是增函數(shù).
   ∴  解得
經(jīng)檢驗,時,滿足題設的兩個條件.
點評:此類問題常常利用函數(shù)的單調(diào)性列出關于自變量的式子處理,屬基礎題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

是定義在上以2為周期的偶函數(shù),已知,,則函數(shù) 上(  )
A.是增函數(shù)且B.是增函數(shù)且
C.是減函數(shù)且D.是減函數(shù)且

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)
(1)若上單調(diào)遞增,求的取值范圍;
(2)若定義在區(qū)間D上的函數(shù)對于區(qū)間上的任意兩個值總有以下不等式成立,則稱函數(shù)為區(qū)間上的 “凹函數(shù)”.試證當時,為“凹函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的值域是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

理科已知函數(shù),當時,函數(shù)取得極大值.
(Ⅰ)求實數(shù)的值;(Ⅱ)已知結(jié)論:若函數(shù)在區(qū)間內(nèi)導數(shù)都存在,且,則存在,使得.試用這個結(jié)論證明:若,函數(shù),則對任意,都有;(Ⅲ)已知正數(shù)滿足求證:當,時,對任意大于,且互不相等的實數(shù),都有

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知是函數(shù)的一個極值點,其中
(1)求的關系式;
(2)求的單調(diào)區(qū)間;
(3)設函數(shù)函數(shù)g(x)= ;試比較g(x)與的大小。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列函數(shù)中既是偶函數(shù),又是區(qū)間上的減函數(shù)的是(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義在上的奇函數(shù)滿足,且在上單調(diào)遞增,則
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若函數(shù)在區(qū)間(0,1]上是減函數(shù),則的取值范圍是_________。

查看答案和解析>>

同步練習冊答案