【題目】如圖,圓形紙片的圓心為,半徑為1,該紙片上的等邊三角形的中心為.、為圓上的點(diǎn),,分別是以,為底邊的等腰三角形.沿虛線剪開(kāi)后,分別以,,為折痕折起,,使得、、重合,得到三棱錐.當(dāng)的邊長(zhǎng)變化時(shí),所得三棱錐體積的最大值為__________

【答案】

【解析】分析:由題,連接OD,交BC于點(diǎn)G,由題意得OD⊥BC,OG=BC,設(shè)OG=x,則BC=2x,DG=1﹣x,三棱錐的高h(yuǎn)=,求出S△ABC=3,V==,令f(x)=x4﹣2x5,x∈(0,),f′(x)=4x3﹣10x4,f(x)≤f()=,由此能求出體積最大值.

詳解:由題意,連接OD,交BC于點(diǎn)G,由題意得OD⊥BC,OG=BC,

設(shè)OG=x,則BC=2x,DG=1﹣x,

三棱錐的高h=,S△ABC=3,

,則V= =

f(x)=x4﹣2x5,x∈(0,),f′(x)=4x3﹣10x4,

函數(shù)在上是增函數(shù),在上是減函數(shù),

所以f(x)≤f()=,

∴V≤=,∴體積最大值為cm3

故答案為:cm3

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}是各項(xiàng)均為正整數(shù)的等差數(shù)列,公差d∈N* , 且{an}中任意兩項(xiàng)之和也是該數(shù)列中的一項(xiàng).
(1)若a1=4,則d的取值集合為;
(2)若a1=2m(m∈N*),則d的所有可能取值的和為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx﹣a2x2+ax,a∈R,且a≠0.
(1)若函數(shù)f(x)在區(qū)間[1,+∞)上是減函數(shù),求實(shí)數(shù)a的取值范圍;
(2)設(shè)函數(shù)g(x)=(3a+1)x﹣(a2+a)x2 , 當(dāng)x>1時(shí),f(x)<g(x)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩個(gè)籃球運(yùn)動(dòng)員互不影響地在同一位置投球,命中率分別為,且乙投球3次均未命中的概率為,甲投球未命中的概率恰是乙投球未命中的概率的2倍. 

(Ⅰ)求乙投球的命中率;

(Ⅱ)若甲投球1次,乙投球2次,兩人共命中的次數(shù)記為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等比數(shù)列{an}滿足an+1+an=92n﹣1 , n∈N* . (Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=nan , 數(shù)列{bn}的前n項(xiàng)和為Sn , 若不等式Sn>kan﹣1對(duì)一切n∈N*恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】德國(guó)數(shù)學(xué)家科拉茨1937年提出了一個(gè)著名的猜想:任給一個(gè)正整數(shù)n,如果n是偶數(shù),就將它減半(即);如果n是奇數(shù),則將它乘31(即3n+1),不斷重復(fù)這樣的運(yùn)算,經(jīng)過(guò)有限步后,一定可以得到1. 對(duì)于科拉茨猜想,目前誰(shuí)也不能證明,也不能否定,現(xiàn)在請(qǐng)你研究:如果對(duì)正整數(shù)n(首項(xiàng))按照上述規(guī)則施行變換后的第8項(xiàng)為1(注:l可以多次出現(xiàn)),則n的所有不同值的個(gè)數(shù)為

A. 4 B. 6 C. 8 D. 32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=x3-3ax2+2bxx=1處有極小值-1.

(1)求a、b的值

(2)求出f(x)的單調(diào)區(qū)間;

(3)求f(x)的極大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“a<﹣2”是“函數(shù)f(x)=ax+3在區(qū)間[﹣1,2]上存在零點(diǎn)x0”的(
A.充分非必要條件
B.必要非充分條件
C.充分必要條件
D.既非充分也非必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線E: =1(a>0,b>0),點(diǎn)F為E的左焦點(diǎn),點(diǎn)P為E上位于第一象限內(nèi)的點(diǎn),P關(guān)于原點(diǎn)的對(duì)稱點(diǎn)為Q,且滿足|PF|=3|FQ|,若|OP|=b,則E的離心率為(
A.
B.
C.2
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案