②③
分析:利用奇函數(shù)的定義判斷出f(x)為奇函數(shù),通過(guò)對(duì)x的分段討論去掉絕對(duì)值轉(zhuǎn)化為分段函數(shù),討論x≥0的值域、單調(diào)性判斷,由此可得結(jié)論.
解答:①∵f(-x)=-f(x),∴f(x)為奇函數(shù)
∵
當(dāng)
∵f(x)為奇函數(shù),∴當(dāng)x<0是,f(x)∈(-1,0)
∴函數(shù)f(x)的值域?yàn)閒(x)∈(-1,1),故①不正確;
②當(dāng)
為增函數(shù),
∵f(x)為奇函數(shù),∴當(dāng)x<0是,f(x)∈(-1,0)為增函數(shù),∴f(x在(-1,1)上為增函數(shù)
故②正確;
③對(duì)任意的x
1,x
2∈R,當(dāng)x
1=x
2時(shí),存在x
0=x
1,使得f(x
1)+f(x
2)=2f(x
0)成立;
當(dāng)x
1≠x
2時(shí),不妨設(shè)x
1<x
2,
∵f(x在(-1,1)上為增函數(shù),f(x
1)+f(x
2)<2f(x
2),∴f(x
0)<f(x
2),
∵f(x在(-1,1)上為增函數(shù),∴x
0<x
2,∴存在x
0,使得f(x
1)+f(x
2)=2f(x
0)成立,故③正確;
④f
n(x)=f(f
1(x))=f(f(x)=
=
不恒成立,故④不正確;
綜上知,命題中正確的是:②③
故答案為:②③
點(diǎn)評(píng):本題考查分段函數(shù)的性質(zhì),要注意結(jié)合函數(shù)值域求法及單調(diào)性判斷方法加以判斷,綜合性強(qiáng).