【題目】在數(shù)列中, , ().

(1)寫出此數(shù)列的前5項; (2)歸納猜想的通項公式,并加以證明.

【答案】(1)見解析;(2)見解析.

【解析】試題分析:(1)利用數(shù)列{an}n項的算術(shù)平均數(shù)等于第n項的2n-1倍,推出關(guān)系式,通過n=2,3,4,5求出此數(shù)列的前5項;
(2)通過(1)歸納出數(shù)列{an}的通項公式,然后用數(shù)學歸納法證明.第一步驗證n=1成立;第二步,假設(shè)n=k猜想成立,然后證明n=k+1時猜想也成立.

試題解析:

(1)由已知分別取,得,

,

所以數(shù)列的前5項是: ,

(2)由(1)中的分析可以猜想

下面用數(shù)學歸納法證明:時,公式顯然成立.

假設(shè)當時成立,即,那么由已知,

,即,

所以, 即,

又由歸納假設(shè),得,

所以,即當時,公式也成立.

知,對一切,都有成立.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】隨著網(wǎng)絡的飛速發(fā)展,人們的生活發(fā)生了很大變化,其中無現(xiàn)金支付是一個顯著特征,某評估機構(gòu)對無現(xiàn)金支付的人群進行網(wǎng)絡問卷調(diào)查,并從參與調(diào)查的數(shù)萬名受訪者中隨機選取了300人,把這300人分為三類,即使用支付寶用戶、使用微信用戶、使用銀行卡用戶,各類用戶的人數(shù)如圖所示,同時把這300人按年齡分為青年人組與中年人組,制成如圖所示的列聯(lián)表:

支付寶用戶

非支付寶用戶

合計

中老年

90

青年

120

合計

300

(1) 完成列聯(lián)表,并判斷是否有99%的把握認為使用支付寶用戶與年齡有關(guān)系?

(2)把頻率作為概率,從所有無現(xiàn)金支付用戶中(人數(shù)很多)隨機抽取3人,用表示所選3人中使用支付寶用戶的人數(shù),求的分布列與數(shù)學期望.

附:

0.100

0.050

0.025

0.010

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某租賃公司擁有汽車100.當每輛車的月租金為3000元時,可全部租出.當每輛車的月租金每增加元時,未租出的車將會增加一輛.租出的車每輛每月需要維護費元,未租出的車每輛每月需要維護費.

1)當每輛車的月租金定為元時,能租出多少輛車?

2)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場準備在今年的“五一假”期間對顧客舉行抽獎活動,舉辦方設(shè)置了兩種抽獎方案,方案的中獎率為,中獎可以獲得分;方案的中獎率為,中獎可以獲得分;未中獎則不得分,每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,并憑分數(shù)兌換獎品,

1)若顧客甲選擇方案抽獎,顧客乙選擇方案抽獎,記他們的累計得分為,若的概率為,求

2)若顧客甲、顧客乙兩人都選擇方案或都選擇方案進行抽獎,問:他們選擇何種方案抽獎,累計得分的均值較大?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】銳角是第幾象限角?第一象限角一定是銳角嗎?再分別就直角、鈍角來回答這兩個問題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若曲線處切線的斜率為,求此切線方程;

(2)若有兩個極值點,求的取值范圍,并證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】世界那么大,我想去看看,處在具有時尚文化代表的大學生們旅游動機強烈,旅游可支配收入日益增多,可見大學生旅游是一個巨大的市場.為了解大學生每年旅游消費支出(單位:百元)的情況,相關(guān)部門隨機抽取了某大學的名學生進行問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:

組別

頻數(shù)

(Ⅰ)求所得樣本的中位數(shù)(精確到百元);

(Ⅱ)根據(jù)樣本數(shù)據(jù),可近似地認為學生的旅游費用支出服從正態(tài)分布,若該所大學共有學生人,試估計有多少位同學旅游費用支出在元以上;

(Ⅲ)已知樣本數(shù)據(jù)中旅游費用支出在范圍內(nèi)的名學生中有名女生, 名男生,現(xiàn)想選其中名學生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學期望.

附:若,則,

, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)f(x)的最小正周期及單調(diào)減區(qū)間;

(2)若α∈(0,π),且f,求tan的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓的離心率是,過點的動直線與橢圓相交于兩點當直線軸平行時,直線被橢圓截得的線段長為.

(Ⅰ)求橢圓的方程;

(Ⅱ)在軸上是否存在異于點的定點,使得直線變化時,總有?若存在,求出點的坐標若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案